Skip to main content
Log in

Threshold Behavior and Non-quasiconvergent Solutions with Localized Initial Data for Bistable Reaction–Diffusion Equations

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We consider bounded solutions of the semilinear heat equation \(u_t=u_{xx}+f(u)\) on \(R\), where \(f\) is of the unbalanced bistable type. We examine the \(\omega \)-limit sets of bounded solutions with respect to the locally uniform convergence. Our goal is to show that even for solutions whose initial data vanish at \(x=\pm \infty \), the \(\omega \)-limit sets may contain functions which are not steady states. Previously, such examples were known for balanced bistable nonlinearities. The novelty of the present result is that it applies to a robust class of nonlinearities. Our proof is based on an analysis of threshold solutions for ordered families of initial data whose limits at infinity are not necessarily zeros of \(f\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Angenent, S.: The zeroset of a solution of a parabolic equation. J. Reine Angew. Math. 390, 79–96 (1988)

    MathSciNet  MATH  Google Scholar 

  2. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–345 (1983)

    MathSciNet  MATH  Google Scholar 

  3. Brunovský, P., Poláčik, P.: On the local structure of \(\omega \)-limit sets of maps. Z. Angew. Math. Phys. 48, 976–986 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Busca, J., Jendoubi, M.-A., Poláčik, P.: Convergence to equilibrium for semilinear parabolic problems in \(\mathbb{R}^N\). Commun. Part. Diff. Equ. 27, 1793–1814 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, X., Lou, B., Zhou, M., Giletti, T.: Long time behavior of solutions of a reaction–diffusion equation on unbounded intervals with Robin boundary conditions. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014). doi:10.1016/j.anihpc.2014.08.004

  6. Chen, X.-Y.: A strong unique continuation theorem for parabolic equations. Math. Ann. 311, 603–630 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, X.-Y., Matano, H.: Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations. J. Differ. Equ. 78, 160–190 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Collet, P., Eckmann, J.-P.: Space-time behaviour in problems of hydrodynamic type: a case study. Nonlinearity 5, 1265–1302 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Du, Y., Matano, H.: Convergence and sharp thresholds for propagation in nonlinear diffusion problems. J. Eur. Math. Soc. 12(2), 279–312 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Du, Y., Poláčik, P.: Locally uniform convergence to an equilibrium for nonlinear parabolic equations on \(\mathbb{R}^N\). Indiana Univ. Math. J. to appear

  11. Eckmann, J.-P., Rougemont, J.: Coarsening by Ginzburg–Landau dynamics. Commun. Math. Phys. 199(2), 441–470 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fašangová, E.: Asymptotic analysis for a nonlinear parabolic equation on \({\mathbb{R}}\). Comment. Math. Univ. Carol. 39, 525–544 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Fašangová, E., Feireisl, E.: The long-time behavior of solutions to parabolic problems on unbounded intervals: the influence of boundary conditions. Proc. Roy. Soc. Edinb. Sect. A 129, 319–329 (1999)

    Article  MATH  Google Scholar 

  14. Feireisl, E.: On the long time behavior of solutions to nonlinear diffusion equations on \({\mathbb{R}}^{N}\). NoDEA Nonlinear Differ. Equ. Appl. 4, 43–60 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feireisl, E., Poláčik, P.: Structure of periodic solutions and asymptotic behavior for time-periodic reaction–diffusion equations on \(\mathbb{R}\). Adv. Differ. Equ. 5, 583–622 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Fife, P.C., McLeod, J.B.: The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Ration. Mech. Anal. 65, 335–361 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  17. Földes, J., Poláčik, P.: Convergence to a steady state for asymptotically autonomous semilinear heat equations on \({R}^{N}\). J. Differ. Equ. 251, 1903–1922 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gallay, T., Slijepčević, S.: Energy flow in extended gradient partial differential equations. J. Dyn. Differ. Equ. 13, 757–789 (2001)

    Article  MATH  Google Scholar 

  19. Gallay, T., Slijepčević, S.: Distribution of energy and convergence to equilibria in extended dissipative systems. J. Dyn. Differ. Equ. (2014). doi:10.1007/s10884-014-9376-z

  20. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, New York (1981)

    Book  MATH  Google Scholar 

  21. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, Berlin (1995)

    Book  MATH  Google Scholar 

  22. Matano, H., Poláčik, P.: Dynamics of nonnegative solutions of one-dimensional reaction–diffusion equations with localized initial data. (in preparation)

  23. Muratov, C.B., Zhong, X.: Threshold phenomena for symmetric decreasing solutions of reaction–diffusion equations. NoDEA Nonlinear Differ. Equ. Appl. 20, 1519–1552 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Poláčik, P.: Threshold solutions and sharp transitions for nonautonomous parabolic equations on \(\mathbb{R}^N\). Arch. Ration. Mech. Anal. 199, 69–97 (2011). Addendum: www.math.umn.edu/~polacik/Publications

  25. Poláčik, P.: Examples of bounded solutions with nonstationary limit profiles for semilinear heat equations on \(\mathbb{R}\). J. Evol. Equ. (2014). doi:10.1007/s00028-014-0260-4

  26. Poláčik, P., Yanagida, E.: Localized solutions of a semilinear parabolic equation with a recurrent nonstationary asymptotics, SIAM. J. Math. Anal. 46, 3481–3496 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Zlatoš, A.: Sharp transition between extinction and propagation of reaction. J. Am. Math. Soc. 19, 251–263 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Supported in part by NSF Grant DMS–1161923.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Poláčik.

Additional information

Dedicated to John Mallet-Paret on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poláčik, P. Threshold Behavior and Non-quasiconvergent Solutions with Localized Initial Data for Bistable Reaction–Diffusion Equations. J Dyn Diff Equat 28, 605–625 (2016). https://doi.org/10.1007/s10884-014-9421-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9421-y

Keywords

Mathematics Subject Classification

Navigation