Skip to main content
Log in

An efficient spread-based evolutionary algorithm for solving dynamic multi-objective optimization problems

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Dynamic multi-objective optimization algorithms are used as powerful methods for solving many problems worldwide. Diversity, convergence, and adaptation to environment changes are three of the most important factors that dynamic multi-objective optimization algorithms try to improve. These factors are functions of exploration, exploitation, selection and adaptation operators. Thus, effective operators should be employed to achieve a robust dynamic optimization algorithm. The algorithm presented in this study is known as spread-based dynamic multi-objective algorithm (SBDMOA) that uses bi-directional mutation and convex crossover operators to exploit and explore the search space. The selection operator of the proposed algorithm is inspired by the spread metric to maximize diversity. When the environment changed, the proposed algorithm removes the dominated solutions and mutated all the non-dominated solutions for adaptation to the new environment. Then the selection operator is used to select desirable solutions from the population of non-dominated and mutated solutions. Generational distance, spread, and hypervolume metrics are employed to evaluate the convergence and diversity of solutions. The overall performance of the proposed algorithm is evaluated and investigated on FDA, DMOP, JY, and the heating optimization problem, by comparing it with the DNSGAII, MOEA/D-SV, DBOEA, KPEA, D-MOPSO, KT-DMOEA, Tr-DMOEA and PBDMO algorithms. Empirical results demonstrate the superiority of the proposed algorithm in comparison to other state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  • Aboud A, Fdhila R, Alimi AM (2017) Dynamic multi objective particle swarm optimization based on a new environment change detection strategy. In: International conference on neural information processing. Springer, pp 258–268

  • Alsalibi B, Mirjalili S, Abualigah L, Yahya RI, Gandomi AH (2022) A comprehensive survey on the recent variants and applications of membrane-inspired evolutionary algorithms. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-021-09693-5

    Article  MathSciNet  Google Scholar 

  • Back T (1996) Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, Oxford

    Book  Google Scholar 

  • Barkaoui M, Berger J, Boukhtouta A (2019) An evolutionary approach for the target search problem in uncertain environment. J Combin Optim 38:808–835

    Article  MathSciNet  Google Scholar 

  • Bartz-Beielstein T, Preuß M, Schwefel H-P (2010) Model optimization with evolutionary algorithms. In: Roosen P (ed) Emergence, analysis, and evolution of structures—concepts and strategies across disciplines. Springer, Berlin, pp 47–62

    Google Scholar 

  • Beyer H, Brucherseifer E, Jakob W, Pohlheim H, Sendhoff B, To TB (2002) Evolutionary algorithms-terms and definitions. VDI/VDE-Richtlinie-3550, Blatt 3

  • Cámara Sola M (2010) Parallel processing for dynamic multi-objective optimization. Universidad de Granada, Granada

    Google Scholar 

  • Cámara M, Ortega J, de Toro F (2009) A single front genetic algorithm for parallel multi-objective optimization in dynamic environments. Neurocomputing 72:3570–3579. https://doi.org/10.1016/j.neucom.2008.12.041

    Article  Google Scholar 

  • Cámara M, Ortega J, de Toro F (2010) Approaching dynamic multi-objective optimization problems by using parallel evolutionary algorithms, vol 272, pp 63–86. https://doi.org/10.1007/978-3-642-11218-8_4

  • Champasak P, Panagant N, Pholdee N, Bureerat S, Yildiz AR (2020) Self-adaptive many-objective meta-heuristic based on decomposition for many-objective conceptual design of a fixed wing unmanned aerial vehicle. Aerosp Sci Technol 100:105783

    Article  Google Scholar 

  • Cheng R, Gen M (1996) Genetic algorithms for multi-row machine layout problem. In: Engineering design and automation, pp 876–881

  • Chi Y, Xu Y, Zhang R (2020) Many-objective robust optimization for dynamic VAR planning to enhance voltage stability of a wind-energy power system. IEEE Tran Power Deliv. https://doi.org/10.1109/TPWRD.2020.2982471

    Article  Google Scholar 

  • Christensen TH, Friis F, Bettin S, Throndsen W, Ornetzeder M, Skjølsvold TM, Ryghaug M (2020) The role of competences, engagement, and devices in configuring the impact of prices in energy demand response: findings from three smart energy pilots with households. Energy Policy 137:111142

    Article  Google Scholar 

  • Coello CAC, Cortés NC (2005) Solving multiobjective optimization problems using an artificial immune system. Genet Program Evol Mach 6:163–190. https://doi.org/10.1007/s10710-005-6164-x

    Article  Google Scholar 

  • Coello CAC, Lamont GB, Van Veldhuizen DA (2007) Evolutionary algorithms for solving multi-objective problems, vol 5. Springer, Berlin

    MATH  Google Scholar 

  • Cormen TH, Stein C, Rivest RL, Leiserson CE (2001) Introduction to algorithms. McGraw-Hill Higher Education, New York

    MATH  Google Scholar 

  • Cui Z, Zhang J, Wu D, Cai X, Wang H, Zhang W, Chen J (2020) Hybrid many-objective particle swarm optimization algorithm for green coal production problem. Inf Sci 518:256–271

    Article  MathSciNet  Google Scholar 

  • Czumbil L, Micu DD, Ceclan A (2021) Advanced numerical methods based on artificial intelligence. In: Mahdavi Tabatabaei N, Bizon N (eds) Numerical methods for energy applications. Springer, Cham, pp 93–120. https://doi.org/10.1007/978-3-030-62191-9_4

    Chapter  Google Scholar 

  • Deb K (1999) Multi-objective genetic algorithms: problem difficulties and construction of test problems. Evol Comput 7:205–230. https://doi.org/10.1162/evco.1999.7.3.205

    Article  Google Scholar 

  • Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Hoboken

    MATH  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197. https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  • Deb K, Rao N UB, Karthik S (2007) Dynamic multi-objective optimization and decision-making using modified NSGA-II: a case study on hydro-thermal power scheduling, vol 4403, pp 803–817. https://doi.org/10.1007/978-3-540-70928-2_60

  • Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, 1995. MHS '95, 4–6 Oct 1995, pp 39–43. https://doi.org/10.1109/MHS.1995.494215

  • Eiben AE, Schoenauer M (2002) Evolutionary computing. Inf Process Lett 82:1–6

    Article  MathSciNet  Google Scholar 

  • Eiben AE, Smith JE (2003) Introduction to evolutionary computing, vol 53. Springer, Berlin

    Book  Google Scholar 

  • Erik KA, Jonathan C (2001) Formal engineering design synthesis. Cambridge University Press, Cambridge

    Google Scholar 

  • Gen M, Cheng R (1997) Genetic algorithms and engineering design, 1st edn. Wiley-Interscience, Hoboken

    Google Scholar 

  • Ghannadpour SF, Noori S, Tavakkoli-Moghaddam R (2014) A multi-objective vehicle routing and scheduling problem with uncertainty in customers’ request and priority. J Combin Optim 28:414–446

    Article  MathSciNet  Google Scholar 

  • Goh C-K, Tan KC (2009) A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Trans Evol Comput 13:103–127. https://doi.org/10.1109/tevc.2008.920671

    Article  Google Scholar 

  • Hämäläinen RP, Mäntysaari J (2002) Dynamic multi-objective heating optimization. Eur J Oper Res 142:1–15. https://doi.org/10.1016/s0377-2217(01)00282-x

    Article  MATH  Google Scholar 

  • Hatzakis I, Wallace D (2006) Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach. Paper presented at the Proceedings of the 8th annual conference on genetic and evolutionary computation, Seattle, WA, USA

  • Helbig M, Engelbrecht AP (2014) Benchmarks for dynamic multi-objective optimisation algorithms. ACM Comput Surv 46:1–39. https://doi.org/10.1145/2517649

    Article  MATH  Google Scholar 

  • Jiang M, Huang Z, Qiu L, Huang W, Yen GG (2018) Transfer learning-based dynamic multiobjective optimization algorithms. IEEE Trans Evol Comput 22:501–514. https://doi.org/10.1109/TEVC.2017.2771451

    Article  Google Scholar 

  • Jiang M, Wang Z, Hong H, Yen GG (2021) Knee point-based imbalanced transfer learning for dynamic multiobjective optimization. IEEE Trans Evol Comput 25:117–129. https://doi.org/10.1109/TEVC.2020.3004027

    Article  Google Scholar 

  • Jiang S, Yang S (2017) Evolutionary dynamic multiobjective optimization: benchmarks and algorithm comparisons. IEEE Trans Cybern 47:198–211

    Article  Google Scholar 

  • Liu M, Zeng W (2012) A fast evolutionary algorithm for dynamic bi-objective optimization problems, pp 130–134. https://doi.org/10.1109/iccse.2012.6295042

  • Lumley T, Diehr P, Emerson S, Chen L (2002) The importance of the normality assumption in large public health data sets. Annu Rev Public Health 23:151–169. https://doi.org/10.1146/annurev.publhealth.23.100901.140546

    Article  Google Scholar 

  • Lyman Ott R, Longnecker MT (2015) An introduction to statistical methods and data analysis, 7th edn. Brooks Cole, Belmont

    Google Scholar 

  • Ma X, Li X, Zhang Q, Tang K, Liang Z, Xie W, Zhu Z (2019) A survey on cooperative co-evolutionary algorithms. IEEE Trans Evol Comput 23:421–441. https://doi.org/10.1109/TEVC.2018.2868770

    Article  Google Scholar 

  • Pan SJ, Tsang IW, Kwok JT, Yang Q (2011) Domain adaptation via transfer component analysis. IEEE Trans Neural Netw 22:199–210. https://doi.org/10.1109/TNN.2010.2091281

    Article  Google Scholar 

  • Sharma L, Garg PK (2021) Knowledge representation in artificial intelligence: an overview. In: Artificial intelligence, pp 19–28

  • Smola A, Gretton A, Song L, Schölkopf B (2007) A Hilbert space embedding for distributions. Algorithmic learning theory. Springer, Berlin, pp 13–31

    Chapter  Google Scholar 

  • Srinivas N, Deb K (1994) Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2:221–248. https://doi.org/10.1162/evco.1994.2.3.221

    Article  Google Scholar 

  • Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359. https://doi.org/10.1023/a:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  • Wang L, Ng AH, Deb K (2011) Multi-objective evolutionary optimisation for product design and manufacturing. Springer, Berlin

    Book  Google Scholar 

  • Zhang Q, Yang S, Jiang S, Wang R, Li X (2020) Novel prediction strategies for dynamic multiobjective optimization. IEEE Trans Evol Comput 24:260–274. https://doi.org/10.1109/TEVC.2019.2922834

    Article  Google Scholar 

  • Zhu Z, Tian X, Xia C, Chen L, Cai Y (2020) A shift vector guided multiobjective evolutionary algorithm based on decomposition for dynamic optimization. IEEE Access 8:38391–38403. https://doi.org/10.1109/ACCESS.2020.2974324

    Article  Google Scholar 

  • Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications. Swiss Federal Institute of Technology (ETH), Zürich

    Google Scholar 

  • Zou F, Yen GG, Tang L (2020) A knee-guided prediction approach for dynamic multi-objective optimization. Inf Sci 509:193–209

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Sharifi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falahiazar, A., Sharifi, A. & Seydi, V. An efficient spread-based evolutionary algorithm for solving dynamic multi-objective optimization problems. J Comb Optim 44, 794–849 (2022). https://doi.org/10.1007/s10878-022-00860-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-022-00860-3

Keywords

Navigation