Skip to main content
Log in

Predicting delayed cerebral ischemia after subarachnoid hemorrhage using physiological time series data

Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

To develop and validate a prediction model for delayed cerebral ischemia (DCI) after subarachnoid hemorrhage (SAH) using a temporal unsupervised feature engineering approach, demonstrating improved precision over standard features. 488 consecutive SAH admissions from 2006 to 2014 to a tertiary care hospital were included. Models were trained on 80%, while 20% were set aside for validation testing. Baseline information and standard grading scales were evaluated: age, sex, Hunt Hess grade, modified Fisher Scale (mFS), and Glasgow Coma Scale (GCS). An unsupervised approach applying random kernels was used to extract features from physiological time series (systolic and diastolic blood pressure, heart rate, respiratory rate, and oxygen saturation). Classifiers (Partial Least Squares, linear and kernel Support Vector Machines) were trained on feature subsets of the derivation dataset. Models were applied to the validation dataset. The performances of the best classifiers on the validation dataset are reported by feature subset. Standard grading scale (mFS): AUC 0.58. Combined demographics and grading scales: AUC 0.60. Random kernel derived physiologic features: AUC 0.74. Combined baseline and physiologic features with redundant feature reduction: AUC 0.77. Current DCI prediction tools rely on admission imaging and are advantageously simple to employ. However, using an agnostic and computationally inexpensive learning approach for high-frequency physiologic time series data, we demonstrated that our models achieve higher classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Suarez J. PRINCE Neurocritical Care Point-Prevalence Study Preliminary Results Revealed, vol. 9. Currents: News Magazine of the Neurocritical Care Society; 2014.

  2. Report of World Federation of Neurological Surgeons Committee on a Universal Subarachnoid Hemorrhage Grading Scale. J Neurosurg. 1988;68(6):985–6.

  3. Shea AM, Reed SD, Curtis LH, Alexander MJ, Villani JJ, Schulman KA. Characteristics of nontraumatic subarachnoid hemorrhage in the United States in 2003. Neurosurgery 2007;61(6):1131–7. https://doi.org/10.1227/01.neu.0000306090.30517.ae (discussion 1137–1138).

    Article  PubMed  Google Scholar 

  4. Qureshi AI, Suri MF, Nasar A, Kirmani JF, Divani AA, He W, Hopkins LN. Trends in hospitalization and mortality for subarachnoid hemorrhage and unruptured aneurysms in the United States. Neurosurgery 2005;57(1):1–8 (discussion 1–8).

    Article  Google Scholar 

  5. Molyneux AJ, Kerr RS, Birks J, Ramzi N, Yarnold J, Sneade M, Rischmiller J, Collaborators I. Risk of recurrent subarachnoid haemorrhage, death, or dependence and standardised mortality ratios after clipping or coiling of an intracranial aneurysm in the International Subarachnoid Aneurysm Trial (ISAT): long-term follow-up. Lancet Neurol. 2009;8(5):427–33. https://doi.org/10.1016/S1474-4422(09)70080-8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Springer MV, Schmidt JM, Wartenberg KE, Frontera JA, Badjatia N, Mayer SA. Predictors of global cognitive impairment 1 year after subarachnoid hemorrhage. Neurosurgery 2009;65(6):1043–50. https://doi.org/10.1227/01.NEU.0000359317.15269.20 (discussion 1050–1041).

    Article  PubMed  Google Scholar 

  7. Roos YB, Dijkgraaf MG, Albrecht KW, Beenen LF, Groen RJ, de Haan RJ, Vermeulen M. Direct costs of modern treatment of aneurysmal subarachnoid hemorrhage in the first year after diagnosis. Stroke 2002;33(6):1595–9.

    Article  CAS  Google Scholar 

  8. Mayer SA, Kreiter KT, Copeland D, Bernardini GL, Bates JE, Peery S, Claassen J, Du YE, Connolly ES Jr. Global and domain-specific cognitive impairment and outcome after subarachnoid hemorrhage. Neurology. 2002;59(11):1750–8.

    Article  CAS  Google Scholar 

  9. Hackett ML, Anderson CS. Health outcomes 1 year after subarachnoid hemorrhage: An international population-based study. The Australian Cooperative Research on Subarachnoid Hemorrhage Study Group. Neurology. 2000;55(5):658–62.

    Article  CAS  Google Scholar 

  10. Charpentier C, Audibert G, Guillemin F, Civit T, Ducrocq X, Bracard S, Hepner H, Picard L, Laxenaire MC. Multivariate analysis of predictors of cerebral vasospasm occurrence after aneurysmal subarachnoid hemorrhage. Stroke 1999;30(7):1402–8.

    Article  CAS  Google Scholar 

  11. Dorsch N. A clinical review of cerebral vasospasm and delayed ischaemia following aneurysm rupture. Acta Neurochir Suppl. 2011;110(Pt 1):5–6. https://doi.org/10.1007/978-3-7091-0353-1_1.

    Article  PubMed  Google Scholar 

  12. Schmidt JM, Wartenberg KE, Fernandez A, Claassen J, Rincon F, Ostapkovich ND, Badjatia N, Parra A, Connolly ES, Mayer SA. Frequency and clinical impact of asymptomatic cerebral infarction due to vasospasm after subarachnoid hemorrhage. J Neurosurg. 2008;109(6):1052–9. https://doi.org/10.3171/JNS.2008.109.12.1052.

    Article  PubMed  Google Scholar 

  13. Rabinstein AA, Pichelmann MA, Friedman JA, Piepgras DG, Nichols DA, McIver JI, Toussaint LG 3rd, McClelland RL, Fulgham JR, Meyer FB, Atkinson JL, Wijdicks EF. Symptomatic vasospasm and outcomes following aneurysmal subarachnoid hemorrhage: a comparison between surgical repair and endovascular coil occlusion. J Neurosurg. 2003;98(2):319–25. https://doi.org/10.3171/jns.2003.98.2.0319.

    Article  PubMed  Google Scholar 

  14. Kirmani JF, Qureshi AI, Hanel RA, Siddiqui AM, Safdar A, Yahia AM, Kim SH, Guterman LR, Hopkins LN. Silent cerebral infarctions in poor-grade patients with subarachnoid hemorrhage. Neurology 2002;58(7):A159.

    Google Scholar 

  15. Frontera JA, Fernandez A, Schmidt JM, Claassen J, Wartenberg KE, Badjatia N, Connolly ES, Mayer SA. Defining vasospasm after subarachnoid hemorrhage: what is the most clinically relevant definition? Stroke (2009);40(6):1963–8. https://doi.org/10.1161/STROKEAHA.108.544700.

    Article  PubMed  Google Scholar 

  16. Vergouwen MD, Vermeulen M, van Gijn J, Rinkel GJ, Wijdicks EF, Muizelaar JP, Mendelow AD, Juvela S, Yonas H, Terbrugge KG, Macdonald RL, Diringer MN, Broderick JP, Dreier JP, Roos YB. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke 2010;41(10):2391–5. https://doi.org/10.1161/STROKEAHA.110.589275.

    Article  PubMed  Google Scholar 

  17. Rosen DS, Macdonald RL. Subarachnoid hemorrhage grading scales: a systematic review. Neurocrit Care. 2005;2(2):110–8. https://doi.org/10.1385/NCC:2:2:110.

    Article  PubMed  Google Scholar 

  18. Fisher CM, Kistler JP, Davis JM. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery 1980;6(1):1–9.

    Article  CAS  Google Scholar 

  19. Claassen J, Bernardini GL, Kreiter K, Bates J, Du YE, Copeland D, Connolly ES, Mayer SA. Effect of cisternal and ventricular blood on risk of delayed cerebral ischemia after subarachnoid hemorrhage: the Fisher scale revisited. Stroke 2001;32(9):2012–20.

    Article  CAS  Google Scholar 

  20. Gaieski DF, Mikkelsen ME, Band RA, Pines JM, Massone R, Furia FF, Shofer FS, Goyal M. Impact of time to antibiotics on survival in patients with severe sepsis or septic shock in whom early goal-directed therapy was initiated in the emergency department. Criti Care Med. 2010;38(4):1045–53. https://doi.org/10.1097/CCM.0b013e3181cc4824.

    Article  Google Scholar 

  21. Diringer MN. Management of aneurysmal subarachnoid hemorrhage. Criti Care Med. 2009;37(2):432–40. https://doi.org/10.1097/CCM.0b013e318195865a.

    Article  Google Scholar 

  22. Heros RC, Zervas NT, Varsos V. Cerebral vasospasm after subarachnoid hemorrhage: an update. Ann Neurol. 1983;14(6):599–608. https://doi.org/10.1002/ana.410140602.

    Article  CAS  PubMed  Google Scholar 

  23. Lindegaard KF, Nornes H, Bakke SJ, Sorteberg W, Nakstad P. Cerebral vasospasm diagnosis by means of angiography and blood velocity measurements. Acta Neurochir. 1989;100(1–2):12–24.

    Article  CAS  Google Scholar 

  24. Krejza J, Szydlik P, Liebeskind DS, Kochanowicz J, Bronov O, Mariak Z, Melhem ER. Age and sex variability and normal reference values for the V(MCA)/V(ICA) index. AJNR 2005;26(4):730–5.

    PubMed  Google Scholar 

  25. Naval NS, Thomas CE, Urrutia VC. Relative changes in flow velocities in vasospasm after subarachnoid hemorrhage: a transcranial Doppler study. Neurocrit Care. 2005;2(2):133–40. https://doi.org/10.1385/NCC:2:2:133.

    Article  PubMed  Google Scholar 

  26. Grosset DG, Straiton J, McDonald I, Cockburn M, Bullock R. Use of transcranial Doppler sonography to predict development of a delayed ischemic deficit after subarachnoid hemorrhage. J Neurosurg. 1993;78(2):183–7. https://doi.org/10.3171/jns.1993.78.2.0183.

    Article  CAS  PubMed  Google Scholar 

  27. Sekhar LN, Wechsler LR, Yonas H, Luyckx K, Obrist W. Value of transcranial Doppler examination in the diagnosis of cerebral vasospasm after subarachnoid hemorrhage. Neurosurgery 1988;22(5):813–21.

    Article  CAS  Google Scholar 

  28. Lysakowski C, Walder B, Costanza MC, Tramer MR. Transcranial Doppler versus angiography in patients with vasospasm due to a ruptured cerebral aneurysm: A systematic review. Stroke 2001;32(10):2292–8.

    Article  CAS  Google Scholar 

  29. Harders AG, Gilsbach JM. Time course of blood velocity changes related to vasospasm in the circle of Willis measured by transcranial Doppler ultrasound. J Neurosurg. 1987;66(5):718–28. https://doi.org/10.3171/jns.1987.66.5.0718.

    Article  CAS  PubMed  Google Scholar 

  30. Crobeddu E, Mittal MK, Dupont S, Wijdicks EF, Lanzino G, Rabinstein AA. Predicting the lack of development of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Stroke 2012;43(3):697–701. https://doi.org/10.1161/STROKEAHA.111.638403.

    Article  CAS  PubMed  Google Scholar 

  31. Frontera JA, Claassen J, Schmidt JM, Wartenberg KE, Temes R, Connolly ES Jr, MacDonald RL, Mayer SA. Prediction of symptomatic vasospasm after subarachnoid hemorrhage: the modified Fisher Scale. Neurosurgery 2006;59(1):21–7. https://doi.org/10.1227/01.NEU.0000218821.34014.1B (discussion 21–27).

    Article  PubMed  Google Scholar 

  32. Foreman PM, Chua MH, Harrigan MR, Fisher WS 3rd, Tubbs RS, Shoja MM, Griessenauer CJ. External validation of the Practical Risk Chart for the prediction of delayed cerebral ischemia following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2016. https://doi.org/10.3171/2016.1.JNS152554.

    Article  PubMed  PubMed Central  Google Scholar 

  33. de Rooij NK, Greving JP, Rinkel GJ, Frijns CJ. Early prediction of delayed cerebral ischemia after subarachnoid hemorrhage: development and validation of a practical risk chart. Stroke 2013;44(5):1288–94. https://doi.org/10.1161/STROKEAHA.113.001125.

    Article  CAS  PubMed  Google Scholar 

  34. Calviere L, Nasr N, Arnaud C, Czosnyka M, Viguier A, Tissot B, Sol JC, Larrue V. Prediction of delayed cerebral ischemia after subarachnoid hemorrhage using cerebral blood flow velocities and cerebral autoregulation assessment. Neurocrit Care. 2015;23(2):253–8. https://doi.org/10.1007/s12028-015-0125-x.

    Article  PubMed  Google Scholar 

  35. Roederer A, Holmes JH, Smith MJ, Lee I, Park S. Prediction of significant vasospasm in aneurysmal subarachnoid hemorrhage using automated data. Neurocrit Care. 2014;21(3):444–50. https://doi.org/10.1007/s12028-014-9976-9.

    Article  PubMed  Google Scholar 

  36. Sacchi L, Dagliati A, Bellazzi R. Analyzing complex patients’ temporal histories: new frontiers in temporal data mining. Methods Mol Biol. 2015;1246:89–105. https://doi.org/10.1007/978-1-4939-1985-7_6.

    Article  PubMed  Google Scholar 

  37. Stacey M, McGregor C. Temporal abstraction in intelligent clinical data analysis: a survey. Artif Intell Med. 2007;39(1):1–24. https://doi.org/10.1016/j.artmed.2006.08.002.

    Article  PubMed  Google Scholar 

  38. Verduijn M, Sacchi L, Peek N, Bellazzi R, de Jonge E, de Mol BA. Temporal abstraction for feature extraction: a comparative case study in prediction from intensive care monitoring data. Artif Intell Med. 2007;41(1):1–12. https://doi.org/10.1016/j.artmed.2007.06.003.

    Article  PubMed  Google Scholar 

  39. Saria S, Rajani AK, Gould J, Koller D, Penn AA. Integration of early physiological responses predicts later illness severity in preterm infants. Sci Transl Med. 2010;2(48):48ra65. https://doi.org/10.1126/scitranslmed.3001304.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mayer CC, Bachler M, Hortenhuber M, Stocker C, Holzinger A, Wassertheurer S. (2014) Selection of entropy-measure parameters for knowledge discovery in heart rate variability data. BMC Bioinform. 15(Suppl 6):S2. https://doi.org/10.1186/1471-2105-15-S6-S2.

    Article  Google Scholar 

  41. Dua S, Saini S, Singh H. Temporal pattern mining for multivariate time series classification. J Med Imag Health Inform. 2011;1(2):164–9. https://doi.org/10.1166/jmihi.2011.1019.

    Article  Google Scholar 

  42. Lehman LW, Adams RP, Mayaud L, Moody GB, Malhotra A, Mark RG, Nemati S. A physiological time series dynamics-based approach to patient monitoring and outcome prediction. IEEE J Biomed Health Inform. 2015;19(3):1068–76. https://doi.org/10.1109/JBHI.2014.2330827.

    Article  PubMed  Google Scholar 

  43. Schulam P, Wigley F, Saria S. Clustering longitudinal clinical marker trajectories from electronic health data. Applications to phenotyping and endotype discovery. In: AAAI, Citeseer; 2015. pp. 2956–64.

  44. Nemati S, Adams R. Supervised learning in dynamic bayesian networks. Neural information processing systems (NIPS) workshop on deep learning and representation learning, Montreal; 2014.

  45. Luo Y, Xin Y, Joshi R, Celi L, Szolovits P, Predicting ICU. Mortality risk by grouping temporal trends from a multivariate panel of physiologic measurements. In: AAAI, Phoenix; 2016. pp. 42–50.

  46. Saria S, Koller D, Penn A. Learning individual and population level traits from clinical temporal data. In: Proceeding of neural information processing systems (NIPS), predictive models in personalized medicine workshop; 2010.

  47. Lipton ZC, Kale DC, Wetzell RC. (2015) Phenotyping of clinical time series with LSTM recurrent neural networks. arXiv preprint arXiv:151007641.

  48. Lipton ZC, Kale DC, Elkan C, Wetzell R. (2015) Learning to diagnose with LSTM recurrent neural networks. ArXiv e-prints 1511.

  49. Kale DC, Gong D, Che Z, Liu Y, Medioni G, Wetzel R, Ross P An examination of multivariate time series hashing with applications to health care. In: Data Mining (ICDM), 2014 IEEE international conference on, 2014. IEEE, pp 260–269.

  50. Bahadori MT, Kale DC, Fan Y, Liu Y. Functional subspace clustering with application to time series. In: ICML, Lille; 2015. pp. 228–37.

  51. Marlin BM, Kale DC, Khemani RG. Wetzel RC Unsupervised pattern discovery in electronic health care data using probabilistic clustering models. In: Proceedings of the 2nd ACM SIGHIT international health informatics symposium, 2012. ACM, pp 389–98.

  52. Rahimi A, Recht B. Random features for large-scale kernel machines. NIPS. 2007;3(4):5.

    Google Scholar 

  53. Rahimi A, Recht B. Weighted sums of random kitchen sinks: replacing minimization with randomization in learning. Adv Neural Inform Process Syst. 2008;885:1313–20.

    Google Scholar 

  54. Saxe A, Koh PW, Chen Z, Bhand M, Suresh B, Ng AY. (2011) On random weights and unsupervised feature learning. Paper presented at the proceedings of the 28th international conference on machine learning (ICML-11).

  55. Johnson AE, Ghassemi MM, Nemati S, Niehaus KE, Clifton DA, Clifford GD. Machine learning and decision support in critical care. Proc IEEE Inst Electr Electron Eng (2016);104(2):444–66. https://doi.org/10.1109/JPROC.2015.2501978.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 2005;27(8):1226–38. https://doi.org/10.1109/TPAMI.2005.159.

    Article  PubMed  Google Scholar 

  57. Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol. 2005;3(2):185–205.

    Article  CAS  Google Scholar 

  58. Peng HC, Ding C, Long FH. Minimum redundancy—maximum relevance feature selection. IEEE Intell Syst. 2005;20(6):70–1.

    Google Scholar 

  59. Huang YM, Du SX. (2005) Weighted support vector machine for classification with uneven training class sizes. In: Proceedings of 2005 international conference on machine learning and cybernetics, Guangzhou, vol. 1–9, pp 4365–69.

  60. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–97. https://doi.org/10.1007/bf00994018.

    Article  Google Scholar 

  61. Geladi P, Kowalski BR. Partial least-squares regression: a tutorial. Anal Chim Acta. 1986;185:1–17.

    Article  CAS  Google Scholar 

  62. Chang CC, Lin CJ. LIBSVM: a library for support vector machines. ACM T Intel Syst Tec. 2011;2(3):27. https://doi.org/10.1145/1961189.1961199.

    Article  Google Scholar 

  63. Steyerberg EW, Pencina MJ, Lingsma HF, Kattan MW, Vickers AJ, Van Calster B. Assessing the incremental value of diagnostic and prognostic markers: a review and illustration. Eur J Clin Invest. 2012;42(2):216–28. https://doi.org/10.1111/j.1365-2362.2011.02562.x.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Data Collection (SP, HF, JC, SA, DJR, ESC, JMS, AV, KT), Analysis (SP, HF, EG, MM, CW, NE), Writing (SP, HF, MM), Editing (All).

Funding

National Institutes of Health K01-ES026833-02 (SP), National Institutes of Health U54-CA193313-01 (CW). National Science Foundation 1305023 (CW). National Science Foundation 1344668 (CW, NE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soojin Park.

Ethics declarations

Conflict of interest

Authors do not have any other disclosures of potential conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This study has been approved by the Columbia University Medical Center Institutional Review Board.

Informed consent

Informed consent was obtained from all individual participants or their surrogates included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Megjhani, M., Frey, HP. et al. Predicting delayed cerebral ischemia after subarachnoid hemorrhage using physiological time series data. J Clin Monit Comput 33, 95–105 (2019). https://doi.org/10.1007/s10877-018-0132-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-018-0132-5

Keywords

Navigation