Skip to main content

Advertisement

Log in

A pilot study to record visual evoked potentials during prone spine surgery using the SightSaver™ photic visual stimulator

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

This is a pilot study to assess the clinical safety and efficacy of recording real-time flash visual evoked potentials (VEPs) using the SightSaver TM Visual Stimulator mask during prone spine surgery. A prospective, observational pilot study. Twenty patients presenting for spine surgery (microdiscectomy, 1–2 level lumbar fusion, or > 2 levels thoraco-lumbar fusion) were enrolled. The SightSaver™ Visual Stimulator™ was used to elicit VEPs throughout surgery. Somatosensory evoked potentials (SSEPs) were simultaneously recorded. All patients underwent general anesthesia with a combination of intravenous and inhaled agents. The presence, absence, and changes in VEP were qualitatively analyzed. Reproducible VEPs were elicited in 18/20 patients (36/40 eyes). VEPs were exquisitely sensitive to changes in anesthesia and decayed with rising MAC of isoflurane and/or N2O. Decrements in VEPs were observed without concomitant changes in SSEPs. The mask was simple to apply and use and was not associated with adverse effects. The SightSaver™ mask represents an emerging technology for monitoring developing visual insults during surgery. The definitive applications remain to be determined, but likely include use in select patients and/or surgeries. Here, we have validated the device as safe and effective, and show that VEPs can be recorded in real time under general anesthesia in the prone position. Future studies should be directed towards understanding the ideal anesthetic regimen to facilitate stable VEP recording during prone spine surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Epstein NE. Perioperative visual loss following prone spinal surgery: a review. Surg Neurol Int. 2016;7(Suppl 3):S347–60.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stambough JL, Dolan D, Werner R, et al. Ophthalmologic complications associated with prone positioning in spine surgery. J Am Acad Orthop Surg. 2007;15:156–65.

    Article  PubMed  Google Scholar 

  3. Kamming D, Clarke S. Postoperative visual loss following prone spinal surgery. Br J Anaesth. 2005;95(2):257–60.

    Article  PubMed  CAS  Google Scholar 

  4. Lee LA, Roth S, Posner KL, et al. The American Society of Anesthesiologists Postoperative Visual Loss Registry: analysis of 93 spine surgery cases with postoperative visual loss. Anesthesiology 2006;105(4):652–9.

    Article  PubMed  Google Scholar 

  5. Berg KT, Harrison AR, Lee MS. Perioperative visual loss in ocular and nonocular surgery. Clin Ophthalmol. 2010;4:531–46.

    PubMed  PubMed Central  Google Scholar 

  6. Myers MA, Hamilton SR, Bogosian AJ, et al. Visual loss as a complication of spine surgery. A review of 37 cases. Spine 1997;22:1325–9.

    Article  PubMed  CAS  Google Scholar 

  7. Kodama K, Goto T, Sato A, et al. Standard and limitation of intraoperative monitoring of the visual evoked potential. Acta Neurochir. 2010;152:643–8.

    Article  PubMed  Google Scholar 

  8. Sasaki T, Itakura T, Suzuki K, et al. Intraoperative monitoring of visual evoked potential: introduction of a clinically useful method. J Neurosurg. 2010;112(2):273–84.

    Article  PubMed  Google Scholar 

  9. Kamio Y, Sakai N, Sameshima T, et al. Usefulness of intraoperative monitoring of visual evoked potentials in transsphenoidal surgery. Neurol Med Chir. 2014;54(8):606–11.

    Article  Google Scholar 

  10. Uhl RR, Squires KC, Bruce DL, Starr A. Variations in visual evoked potentials under anesthesia. Prog Brain Res. 1980;54:463–6.

    Article  PubMed  CAS  Google Scholar 

  11. Watson KR, Shah MV. Clinical comparison of “single agent” anaesthesia with sevoflurane versus target controlled infusion of propofol. Br J Anaesth. 2000;85:541–6.

    Article  PubMed  CAS  Google Scholar 

  12. Neuloh G. Time to revisit VEP monitoring?. Acta Neurochir. 2010;152:649–50.

    Article  PubMed  Google Scholar 

  13. Houlden DA, Turgeon CA, Polis T, et al. Intraoperative flash VEPs are reproducible in the presence of low amplitude EEG. J Clin Monit Comput. 2014;28(3):275–85.

    Article  PubMed  Google Scholar 

  14. Luo Y, Regli L, Bozinov O, et al. Clinical utility and limitations of intraoperative monitoring of visual evoked potentials. PLoS ONE 2015;10(3):e0120525. https://doi.org/10.1371/journal.pone.0120525.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Chung S-B, Park C-W, Seo D-W, et al. Intraoperative visual evoked potential has no association with postoperative visual outcomes in transsphenoidal surgery. Acta Neurochir. 2012;154:1505–10.

    Article  PubMed  Google Scholar 

  16. Anschel Technologies. Sightsaver TM Visual Stimulator K113785. 510(k) summary: June 6, 2012.

  17. Uribe AA, Mendel E, peters ZA, Shneker BF, et al. Comparison of visual evoked potential monitoring during spine surgeries under total intravenous anesthesia versus balanced general anesthesia. Clin Neurophysiol. 2017;128(10):2006–13.

    Article  PubMed  Google Scholar 

  18. Odom JV, Bach M, Brigell M, et al. ISCEV standard for clinical visual evoked potentials: (2016 update). Doc Ophthalmol. 2016;133(1):1–9.

    Article  PubMed  Google Scholar 

  19. Harris PA, Taylor R, Thielke R, Payne J, et al. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–81.

    Article  PubMed  Google Scholar 

  20. Banoub M, Tetzlaff JE, Schubert A. Pharmacologic and physiologic influences affecting sensory evoked potentials: implications for perioperative monitoring. Anesthesiology 2003;99(3):716–37.

    Article  PubMed  Google Scholar 

  21. Kabbara AI. What happened to the old visual evoked potential monitoring? Anesthesiology 2007;106(6):1249.

    Article  PubMed  Google Scholar 

  22. Uribe AA, Baig MN, Puente EG, et al. Current intraoperative devices to reduce visual loss after spine surgery. Neurosurg Focus. 2012;33(2):E14.

    Article  PubMed  Google Scholar 

  23. Creel D. Visually evoked potentials. In: Kolb H, Fernandez E, Nelson R, editors. Webvision: the organization of the retina and visual system. Salt Lake City: University of Utah Health Sciences Center; 2015.

    Google Scholar 

  24. Van Der Marel EH, Dagnelie G, Spekreijse H. Subdurally recorded pattern and luminance EPs in the alert rhesus monkey. Electroencephalogr Clin Neurophysiol. 1984;57:354–68.

    Article  PubMed  Google Scholar 

  25. Kraut MA, Arezzo JC, Vaughan JG. Intracortical generators of the flash VEP in monkeys. Electroencephalogr Clin Neurophysiol. 1985;62:300–12.

    Article  PubMed  CAS  Google Scholar 

  26. Ducati A, Fava E, Motti EDF. Neuronal generators of the visual evoked potentials: intracerebral recording in awake humans. Electroencephalogr Clin Neurophysiol. 1988;71:89–99.

    Article  PubMed  CAS  Google Scholar 

  27. Pawela CP, Hudetz AG, Ward BD, et al. Modeling of region-specific fMRI BOLD neurovascular response functions in rat brain reveals residual differences that correlate with the differences in regional evoked potentials. Neuroimage 2008;41(2):525–34.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kumar A, Bhattacharya A, Makhija N. Evoked potential monitoring in anaesthesia and analgesia. Anaesthesia 2000;55(3):225–41.

    Article  PubMed  CAS  Google Scholar 

  29. Goto T, Tanaka Y, Kodama K, et al. Loss of visual evoked potential following temporary occlusion of the superior hypophyseal artery during aneurysm clip placement surgery. Case report. J Neurosurg. 2007;107(4):865–7.

    Article  PubMed  Google Scholar 

  30. Curatolo JM, Macdonnell RA, Berkovic SF, et al. Intraoperative monitoring to preserve central visual fields during occipital corticectomy for epilepsy. J Clin Neurosci. 2000;7(3):234–7.

    Article  PubMed  CAS  Google Scholar 

  31. San-Juan, D., de Dios Del Castillo Calcaneo, J., Villegas, T.G. et al. Visual intraoperative monitoring of occipital arteriovenous malformation surgery. Clin Neurol Neurosurg. 2011;113(8):680–2.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Soffin.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soffin, E.M., Emerson, R.G., Cheng, J. et al. A pilot study to record visual evoked potentials during prone spine surgery using the SightSaver™ photic visual stimulator. J Clin Monit Comput 32, 889–895 (2018). https://doi.org/10.1007/s10877-017-0092-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-017-0092-1

Keywords

Navigation