Skip to main content

Advertisement

Log in

The Effect of Calcium Perovskite and Newly Developed Magnetic CaFe2O4/CaTiO3 Perovskite Nanocomposite on Degradation of Toxic Dyes Under UV–Visible Radiation

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this research, we used a fast and simple method for synthesis of calcium titanate (CaTiO3) and calcium ferrite (CaFe2O4) nanostructures: microwave assisted co-precipitation method. The effect of time, microwave radiation power and type of solvent on the morphology of magnetic nanoparticles was studied. Calcium ferrite/calcium titanate (CaFe2O4/CaTiO3) nanocomposite was prepared by the same method. The morphology and particles size of samples were studied by scanning electron microscopy. The porous nanostructure of CaTiO3 and CaFe2O4/CaTiO3 were ideal for photocatalytic behavior. The crystallographic properties of products were analyzed using X-ray diffraction technique. The purity of the samples confirmed by Fourier transform infrared spectroscopy. The magnetic property of CaFe2O4 and CaFe2O4/CaTiO3 nanoparticles was determined by vibrating sample magnetometry. Both products had ferromagnetic properties with nanocomposite being a hard ferromagnetic sample. The photocatalytic behavior of CaTiO3 and prepared nanocomposite was studied by measuring degradation efficiency of three different acidic dyes irradiated under UV–Visible light in different initial conditions. The results confirmed that both products have photocatalytic properties, but the CaFe2O4/CaTiO3 has a higher photocatalytic activity due to coupling of two semiconductors, which can be employed for effective charge separation and increase of lifetime in the charge carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Hou, W. Chu, and M. Ma (2012). J. Environ. Sci. 24 (7), 1204. https://doi.org/10.1016/S1001-0742(11)61006-1.

    Article  CAS  Google Scholar 

  2. M. O. Ansari, M. M. Khan, S. A. Ansari, and M. H. Cho (2015). J. Saudi Chem. Soc. 19, 494. https://doi.org/10.1016/j.jscs.2015.06.004.

    Article  Google Scholar 

  3. Y. Zhang, W. Bing, X. Hui, L. Hui, W. Minglu, H. Yixuan, and P. Bingcai (2016). Nano Impact 3, 22. https://doi.org/10.1021/es3000504.

    Article  CAS  Google Scholar 

  4. Y. Lixing, W. Dan, H. Jianfeng, C. Liyun, O. Haibo, and Y. Xiang (2016). J. Alloys Compd. 664, 476. https://doi.org/10.1016/j.jallcom.2015.10.281.

    Article  CAS  Google Scholar 

  5. Y. Liu, J. Li, B. Zhou, Sh. Lv, X. Li, H. Chen, Q. Chen, and W. Cai (2012). Appl. Catal. B: Environ. 111–112, 485. https://doi.org/10.1016/j.apcatb.2011.10.038.

    Article  CAS  Google Scholar 

  6. P. Satishkumar, R. V. Mangalaraja, S. Anandan, and M. Ashokkumar (2013). Chem. Eng. J. 220, 302. https://doi.org/10.1016/j.cej.2013.01.036.

    Article  CAS  Google Scholar 

  7. F. J. Chen, Y. L. Cao, and D. Z. Jia (2013). Chem. Eng. J. 234, 223. https://doi.org/10.1016/j.cej.2013.08.075.

    Article  CAS  Google Scholar 

  8. S. Zinatloo-Ajabshir and M. Salavati-Niasari (2017). Sep. Purif. Technol. 179, 77. https://doi.org/10.1016/j.matlet.2016.05.094.

    Article  CAS  Google Scholar 

  9. S. Masoumi, G. Nabiyouni, and D. Ghanbari (2016). J. Mater. Sci. Mater. Electron. 27, 9962. https://doi.org/10.1007/s10854-016-5067-3.

    Article  CAS  Google Scholar 

  10. S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, and M. Salavati-Niasari (2017). J. Mater. Sci.: Mater. Electron. 28 (23), 17849. https://doi.org/10.1007/s10854-017-7726-4.

    Article  CAS  Google Scholar 

  11. S. Vilhunen, M. Bosund, M. L. Kaariainen, D. Cameron, and M. Sillanpaa (2009). Sep. Purif. Technol. 66, 130. https://doi.org/10.1016/j.seppur.2008.11.004.

    Article  CAS  Google Scholar 

  12. M. Muruganandham, R. Amutha, E. Repo, M. Sillanpaa, Y. Kusumoto, and A. Al-Mamun (2010). J. Photochem. Photobiol. A 216, 133. https://doi.org/10.1016/j.jphotochem.2010.06.008.

    Article  CAS  Google Scholar 

  13. J. Y. Park, S. J. Park, J. H. Lee, C. H. Hwang, K. J. Hwang, S. Jin, D. Y. Choi, S. D. Yoon, and I. H. Lee (2014). Mater. Lett. 121, 97. https://doi.org/10.1016/j.matlet.2014.01.012.

    Article  CAS  Google Scholar 

  14. M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. Oshea (2012). Appl. Catal. B 125, 331. https://doi.org/10.1016/j.apcatb.2012.05.036.

    Article  CAS  Google Scholar 

  15. S. A. Ansari, S. G. Ansari, H. Foaud, and M. H. Cho (2017). New J. Chem. 41, 9314. https://doi.org/10.1039/C6NJ04070E.

    Article  CAS  Google Scholar 

  16. B. I. Stefanov, D. Lebrun, A. Mattsson, C. G. Granqvist, and L. Osterlund (2015). J. Chem. Educ. 92 (4), 678. https://doi.org/10.1021/ed500604e.

    Article  CAS  Google Scholar 

  17. L. Yang, L. Ding, F. Deng, X. B. Luo, and S. L. Luo, in X. Luo and F. Deng (eds.), Nanomaterial for the Removal of Pollutants and Resource Reutilization (Elsevier, Amsterdam, 2019), pp. 1–23.

    Google Scholar 

  18. S. A. Ansari, Z. Khan, M. O. Ansari, and M. H. Cho (2016). RSC Adv. 6, 44616. https://doi.org/10.1039/C6RA06145A.

    Article  CAS  Google Scholar 

  19. T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, and D. G. Nocera (2010). Chem. Rev. 110, 6474. https://doi.org/10.1021/cr100246c.

    Article  CAS  PubMed  Google Scholar 

  20. M. Masjedi-Arani and M. Salavati-Niasari (2017). Int. J. Hydrog. Energy 42, 17184. https://doi.org/10.1016/j.ijhydene.2017.05.118.

    Article  CAS  Google Scholar 

  21. A. Salehabadi, M. Salavati-Niasari, and M. Ghiyasian-Arani (2018). J. Alloys Compd. 745, 789. https://doi.org/10.1016/j.jallcom.2018.02.242.

    Article  CAS  Google Scholar 

  22. A. D. McNaught and A. Wilkinson, IUPAC. Compendium of chemical terminology, 2nd ed. (Blackwell Scientific Publications, Oxford, 1997).

    Google Scholar 

  23. D. H. Zhang, G. D. Li, J. X. Lia, and J. S. Chen (2008). Chem. Commun. 29, 3414. https://doi.org/10.1039/B805737K.

    Article  Google Scholar 

  24. P. Kanhere and Z. Chen (2014). Molecules 19, 19995. https://doi.org/10.3390/molecules191219995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. S. Parsons, Advanced Oxidation Processes for Water and Wastewater Treatment. (IWA Publishing, London, 2004), pp. 1–347.

    Google Scholar 

  26. G. Ferreira Teixeira, E. Silva Jr., R. Vilela, M. A. Zaghete, and F. Colmati (2019). Catalysts 9, 721. https://doi.org/10.3390/catal9090721.

    Article  CAS  Google Scholar 

  27. A. S. Bhalla, R. Guo, and R. Roy (2000). Mat. Res. Innov. 4, 3. https://doi.org/10.1007/s100190000062.

    Article  CAS  Google Scholar 

  28. M. Kharaziha and M. H. Fathi (2009). Ceram. Int. 35, 2449. https://doi.org/10.1016/j.ceramint.2009.02.001.

    Article  CAS  Google Scholar 

  29. T. Kokubo, T. Matsushita, and H. Takadama (2007). J. Eur. Ceram. Soc. 27, 1553. https://doi.org/10.1016/j.jeurceramsoc.2006.04.015.

    Article  CAS  Google Scholar 

  30. T. Inadome, K. Hayashi, Y. Nakashima, H. Tsumura, and Y. Sugioka (1995). J. Biomed. Mater. Res. 29, 19. https://doi.org/10.1002/jbm.820290104.

    Article  CAS  PubMed  Google Scholar 

  31. N. Keyvani, A. Azarniya, H. R. MadaahHosseini, M. Abedi, and D. Moskovskikh (2019). Mater. Chem. Phys. 223, 202. https://doi.org/10.1016/j.matchemphys.2018.10.060.

    Article  CAS  Google Scholar 

  32. T. Ohno, T. Tsubota, Y. Nakamura, and K. Sayama (2005). Appl. Catal. Gen. 288, 74. https://doi.org/10.1016/j.apcata.2005.04.035.

    Article  CAS  Google Scholar 

  33. S. Preda, C. Anastasescu, I. Balint, P. Umek, M. Sluban, C. C. Negrila, D. G. Angelescu, V. Bratan, A. Rusu, and M. Zaharescu (2019). Appl. Surf. Sci. 470, 1053. https://doi.org/10.1016/j.apsusc.2018.11.194.

    Article  CAS  Google Scholar 

  34. M. Morin, L. Torres-Martinez, D. Sanchez-Martinez, and C. Gomez-Solis (2017). Mat. Res. 20, 1322. https://doi.org/10.1590/1980-5373-MR-2016-0615.

    Article  CAS  Google Scholar 

  35. C. Suryanarayana (2001). Prog. Mater. Sci. 46 (1–2), 1. https://doi.org/10.1016/S0079-6425(99)00010-9.

    Article  CAS  Google Scholar 

  36. D. Zhang, M. Wang, G. J. Ren, and E. J. Song (2013). Mater. Sci. Eng. 33 (8), 4677. https://doi.org/10.1016/j.msec.2013.07.030.

    Article  CAS  Google Scholar 

  37. M. S. Sadjadi, K. Zare, S. Khanahmadzadeh, and M. Enhessari (2008). Mater. Lett. 62 (21–22), 3679. https://doi.org/10.1016/j.matlet.2008.04.028.

    Article  CAS  Google Scholar 

  38. X. Tang and K. Hu (2006). J. Mater. Sci. 41 (23), 8025. https://doi.org/10.1007/s10853-006-0908-8.

    Article  CAS  Google Scholar 

  39. S. H. Chuang, M. L. Hsieh, S. C. Wu, H. C. Lin, T. S. Chao, and T. H. Hou (2011). J. Am. Ceram. Soc. 94 (1), 250. https://doi.org/10.1111/j.1551-2916.2010.04037.x.

    Article  CAS  Google Scholar 

  40. M. Enhessari, S. N. Moqhadam, M. K. Razi, S. Ghezelbashi, and M. H. Tootkani (2010). Int. J. Nano Dimens. 1 (2), 125. https://doi.org/10.7508/IJND.2010.02.005.

    Article  Google Scholar 

  41. Y. J. Lin, Y. H. Chang, W. D. Yang, and B. S. Tsai (2006). J. Non-Cryst. Solids 352 (8), 789. https://doi.org/10.1016/j.jnoncrysol.2006.02.001.

    Article  CAS  Google Scholar 

  42. M. L. Moreira, E. C. Paris, G. S. Nascimento, V. M. Longo, J. R. Sambrano, V. R. Mastelaro, M. I. B. Bernardi, A. Juan, J. A. Varela, and E. Longo (2009). Acta Mater. 57, 5174. https://doi.org/10.1016/j.actamat.2009.07.019.

    Article  CAS  Google Scholar 

  43. M. L. Moreira, J. R. Bordin, J. Andrés, J. A. Varela, and E. Longo (2020). Mol. Syst. Des. Eng. 7, 1255. https://doi.org/10.1039/D0ME00043D.

    Article  Google Scholar 

  44. A. Kiani, Gh. Nabiyouni, Sh. Masoumi, and D. Ghanbari (2019). Compos. B 175, 17080. https://doi.org/10.1016/j.compositesb.2019.107080.

    Article  CAS  Google Scholar 

  45. S. Mortazavi-Derazkola, M. Salavati-Niasari, O. Amiri, and A. Abbasi (2017). J. Energy Chem. 26, 17. https://doi.org/10.1016/j.jechem.2016.10.015.

    Article  Google Scholar 

  46. F. Ansari, A. Sobhani, and M. Salavati-Niasari (2018). J. Colloid Interface Sci. 514, 723. https://doi.org/10.1016/j.jcis.2017.12.083.

    Article  CAS  PubMed  Google Scholar 

  47. Z. L. Lu, P. Z. Gao, R. X. Ma, Y. K. Sun, and D. Y. Li (2016). Eng. Mater. 680, 272. https://doi.org/10.4028/www.scientific.net/KEM.680.272.

    Article  Google Scholar 

  48. M. Etminan, Gh. Nabiyouni, and D. Ghanbari (2018). J. Mater. Sci. Mater. Electron. 29, 1766. https://doi.org/10.1007/s10854-017-8085-x.

    Article  CAS  Google Scholar 

  49. N. Eskandari, G. Nabiyouni, S. Masoumi, and D. Ghanbari (2019). Compos. Part B: Eng. 176, 107343. https://doi.org/10.1016/j.compositesb.2019.107343.

    Article  CAS  Google Scholar 

  50. M. Joulaei, K. Hedayati, and D. Ghanbari (2019). Compos. Part B: Eng. 176, 107345. https://doi.org/10.1016/j.compositesb.2019.107345.

    Article  CAS  Google Scholar 

  51. F. Beshkar, H. Khojasteh, and M. Salavati-Niasari (2017). J. Colloid Interface Sci. 497, 57. https://doi.org/10.1016/j.jcis.2017.02.016.

    Article  CAS  PubMed  Google Scholar 

  52. M. Kubota, Y. Kanazawa, K. Nasu, S. Moritake, H. Kawaji, T. Atake, and Y. Ichiyanagi (2008). J. Therm. Anal. Calorim. 92, 461. https://doi.org/10.1007/s10973-007-8971-1.

    Article  CAS  Google Scholar 

  53. J. Chandradass, A. H. Jadhav, K. H. Kim, and H. Kim (2012). J. Alloys Compd. 517, 164. https://doi.org/10.1016/j.jallcom.2011.12.071.

    Article  CAS  Google Scholar 

  54. J. Yunas, N. H. Sulaiman, and M. J. Ghazali (2018). IEEE Int. Conf. Semicond. Electron. (ICSE) 978, 1. https://doi.org/10.1109/SMELEC.2018.8481301.

    Article  Google Scholar 

  55. N. H. Sulaiman, M. J. Ghazali, J. Yunas, A. Rajabi, B. Y. Majlis, and M. Razali (2018). Ceram. Int. 44, 46. https://doi.org/10.1016/j.ceramint.2017.08.203.

    Article  CAS  Google Scholar 

  56. P. Shankar, S. Bhavyashri, R. S. Raveendra, A. Jayasheelan, C. S. Prakash, B. M. Nagabhushana, H. Nagabhushana, and B. Daruka-Prasad (2015). Int. J. Adv. Sci. Tech. Res. 4 (1), 445.

    Google Scholar 

  57. B. M. Patil, R. S. Srinivasa, and S. R. Dharwadkar (2007). Bull. Mater. Sci. 30, 225. https://doi.org/10.1007/s12034-007-0040-7.

    Article  CAS  Google Scholar 

  58. V. S. Marques, L. S. Cavalcante, J. C. Sczancoski, D. P. Volanti, J. W. M. Espinosa, M. R. Joya, M. R. M. C. Santos, P. S. Pizani, J. A. Varela, and E. Longo (2008). Solid State Sci. 10, 1056. https://doi.org/10.1016/j.solidstatesciences.2007.11.004.

    Article  CAS  Google Scholar 

  59. P. Hu, H. Jiao, C.-H. Wang, X. Wang, S. Ye, X.-P. Jing, F. Zhao, and Z.-X. Yue (2011). Mater. Sci. Eng. B 176, 401. https://doi.org/10.1016/j.solidstatesciences.2007.11.004.

    Article  CAS  Google Scholar 

  60. A. Krause, W. M. Weber, D. Pohl, and B. Rellinghaus (2015). J. Phys. D: Appl. Phys. 48 (41), 415304. https://doi.org/10.1088/0022-3727/48/41/415304.

    Article  CAS  Google Scholar 

  61. F. Maghazeii, M. Baghernezhad, and D. Ghanbari (2018). Adv. Mater. Novel Coat. 26, 1815.

    Google Scholar 

  62. M. Karbasi, F. Maghazeii, and D. Ghanbari (2019). J. Nanostruct. 9 (2), 365. https://doi.org/10.22052/JNS.2019.02.018.

    Article  CAS  Google Scholar 

  63. F. Maghazeii, D. Ghanbari, and L. Lotfi (2020). J. Nanostruct. 10 (3), 434. https://doi.org/10.22052/JNS.2020.03.001.

    Article  CAS  Google Scholar 

  64. F. Maghazeii and D. Ghanbari (2020). Adv. Mater. Novel Coat. 34, 2462.

    Google Scholar 

  65. H. P. Klug and L. Alexander, X-ray Diffraction Procedure (Wiley, New York, 1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farnaz Maghazeii.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3086 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdi, Z., Maghazeii, F. & Ghanbari, D. The Effect of Calcium Perovskite and Newly Developed Magnetic CaFe2O4/CaTiO3 Perovskite Nanocomposite on Degradation of Toxic Dyes Under UV–Visible Radiation. J Clust Sci 33, 2475–2487 (2022). https://doi.org/10.1007/s10876-021-02168-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02168-4

Keywords

Navigation