Skip to main content
Log in

CuFe2O4@Ag Nanocomposite Synthesized in the Presence of Spirulina platensis Decreases the Expression of norB Gene in Staphylococcus aureus

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Due to the increasing multi-drug resistance, infections caused by Staphylococcus aureus is regarded as an important health threat. Extrusion of drugs by multidrug efflux pumps plays a crucial role in development of multi-drug resistance among bacteria. Resistance to fluoroquinolones, can be mediated by efflux pumps including NorA, NorB and NorC. Thus, efflux pumps inhibition has been considered to improve efficacy of fluoroquinolones. Metal nanoparticles have been tested for antibacterial and anticancer potentials. Among them, magnetic nanoparticles including ferrite based nanoparticles gained attention for their recyclability and site directed drug delivery potential. Due to the limitations associated to physio-chemical synthesis of these nanoparticles, green synthesis of nanoparticles using living organisms has gained interests. Here, we synthesized the CuFe2O4@Ag using Spirulina platensis and investigated its effect on expression of norB gene among S. aureus strains. Synthesized nanocomposite was characterized using Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscope, X-ray diffraction and Energy dispersive X-ray mapping analysis. Chemical analysis of S. platensis extract was done by gas chromatographymass spectrometry analysis. The minimum inhibitory concentration of the nanocomposite in combination with ciprofloxacin was assessed by broth microdilution method and expression of norB gene was evaluated using qualitative real time polymerase chain reaction. The physico-chemical analysis of biosynthesized nanocomposite confirmed the well-dispersed and nanoscale of CuFe2O4@Ag. Also, the results demonstrated that the CuFe2O4@Ag combined with ciprofloxacin increased the efficacy of the drug and reduced expression of norB by 57–69%. Therefore, CuFe2O4@Ag has promising potential for reduction of norB gene and can improve the efficacy of antibacterial drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Q. C. Truong-Bolduc and D. C. Hooper (2010). J. Bacterial. 192, 2525.

    Article  CAS  Google Scholar 

  2. P. N. Markham, E. Westhaus, K. Klyachko, M. E. Johnson, and A. A. Neyfakh (1999). Antimicro. Agents Chemother. 43, 2404.

    Article  CAS  Google Scholar 

  3. A. Nejabatdoust, H. Zamani, and A. Salehzadeh (2019). Microb. Drug Resist. 25, 966.

    Article  CAS  Google Scholar 

  4. N. Shokoofeh, Z. Moradi-Shoeili, A. S. Naeemi, A. Jalali, M. Hedayati, and A. Salehzadeh (2019). Biol. Trace Elem. Res. 191, 522.

    Article  CAS  Google Scholar 

  5. N. Pourmehdi, Z. Moradi-Shoeili, Naeemi A. Sadat, and A. Salehzadeh (2020). Chem Biodivers. https://doi.org/10.1002/cbdv.202000072.

    Article  PubMed  Google Scholar 

  6. Y. G. Kwak, Q. C. Truong-Bolduc, H. Bin Kim, K. H. Song, E. S. Kim, and D. C. Hooper (2013). J. Antimicrob. Chemother. 68, 2766.

    Article  CAS  Google Scholar 

  7. C. C. Berry and A. S. Curtis (2003). J. Phys. D Appl. Phys. 36, R198.

    Article  CAS  Google Scholar 

  8. D. Gingasu, I. Mindru, L. Patron, J. M. Calderon-Moreno, O. C. Mocioiu, S. Preda, N. Stanica, S. Nita, N. Dobre, M. Popa, and G. Gradisteanu (2016). J Nanomater. https://doi.org/10.1155/2016/2106756.

    Article  Google Scholar 

  9. A. Samavati and A. F. Ismail (2017). Particuology 30, 158.

    Article  CAS  Google Scholar 

  10. O. Akhavan and E. Ghaderi (2009). Curr. Appl. Phys. 9, 1381.

    Article  Google Scholar 

  11. L. Lin, H. Cui, G. Zeng, M. Chen, H. Zhang, M. Xu, X. Shen, C. Bortolini, and M. Dong (2013). J. Mater. Chem. B 1, 2719.

    Article  CAS  Google Scholar 

  12. H. Agarwal, S. V. Kumar, and S. Rajeshkumar (2017). Resource-Efficient Technol. 3, 406.

    Article  Google Scholar 

  13. M. Rafique, I. Sadaf, M. S. Rafique, and M. B. Tahir (2017). Artif. Cells. Nanomed. Biotechnol. 45, 1272.

    Article  CAS  Google Scholar 

  14. A. Sharma, S. Sharma, K. Sharma, S. P. Chetri, A. Vashishtha, P. Singh, R. Kumar, B. Rathi, and V. Agrawal (2016). J. Appl. Phycol. 28, 1759.

    Article  CAS  Google Scholar 

  15. CLSI (2017) 27th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute, Wayne.

  16. Q. C. Truong-Bolduc, L. C. Hsing, R. Villet, G. R. Bolduc, Z. Estabrooks, G. F. Taguezem, and D. C. Hoopera (2012). J. Bacteriol. 194, 1823.

    Article  CAS  Google Scholar 

  17. M. W. Pfaffl (2001). Nucleic Acids Res. 29, e45.

    Article  CAS  Google Scholar 

  18. R. Sakthivel, D. S. Malar, and K. P. Devi (2018). Biomed. Pharmacol. 105, 742.

    Article  CAS  Google Scholar 

  19. M. D. P. Silva, F. C. Silva, F. S. M. Sinfrônio, A. R. Paschoal, E. N. Silva, and C. W. A. Paschoal (2014). J. Alloys Compd. 584, 573.

    Article  CAS  Google Scholar 

  20. L. Buzoglu, E. Maltas, M. Ozmen, and S. Yildiz (2014). Colloids Surf. A Physicochem. Eng. Asp. 442, 139.

    Article  CAS  Google Scholar 

  21. W. Shao, X. Liu, H. Min, G. Dong, Q. Feng, and S. Zuo (2015). ACS Appl. Mater. Interface. 7, 6966.

    Article  CAS  Google Scholar 

  22. H. Yang, J. Yan, Z. Lu, X. Cheng, and Y. Tang (2009). J. Alloys Compd 476, 715.

    Article  CAS  Google Scholar 

  23. K. Shameli, M. B. Ahmad, A. Zamanian, P. Sangpour, P. Shabanzadeh, Y. Abdollahi, and M. Zargar (2012). Int. J. Nanomed. 7, 5603.

    Article  CAS  Google Scholar 

  24. Z. Zhu, X. Li, Q. Zhao, Y. Li, C. Sun, and Y. Cao (2013). Mater. Res. Bull. 48, 2927.

    Article  CAS  Google Scholar 

  25. C. Vuong, A. J. Yeh, G. Y. Cheung, and M. Otto (2016). Expert. Opin. Inv. Drug. 25, 73.

    Article  CAS  Google Scholar 

  26. P. L. Sangwan, J. L. Koul, S. Koul, M. V. Reddy, N. Thota, I. A. Khan, A. Kumar, N. P. Kalia, and G. N. Qazi (2008). Bioorg. Med. Chem. 16, 9847.

    Article  CAS  Google Scholar 

  27. A. Ananth, S. Dharaneedharan, M. S. Heo, and Y. S. Mok (2015). Chem. Eng. J. 262, 179.

    Article  CAS  Google Scholar 

  28. G. Franci, A. Falanga, S. Galdiero, L. Palomba, M. Rai, G. Morelli, and M. Galdiero (2015). Molecules. 20, 8856.

    Article  CAS  Google Scholar 

  29. L. R. Christena, V. Mangalagowri, P. Pradheeba, K. B. A. Ahmed, B. I. S. Shalini, M. Vidyalakshmi, and V. Anbazhagan (2015). RSC Adv. 5, 12899.

    Article  CAS  Google Scholar 

  30. D. Gupta, A. Singh, and A. U. Khan (2017). Nanoscale Res. Lett. 12, 454.

    Article  Google Scholar 

  31. M. J. Hajipour, K. M. Fromm, A. A. Ashkarran, D. J. de Aberasturi, I. R. de Larramendi, T. Rojo, V. Serpooshan, W. J. Parak, and M. Mahmoudi (2012). Trends Biotechnol. 30, 499.

    Article  CAS  Google Scholar 

  32. A. Nejabatdoust, A. Salehzadeh, H. Zamani, and Z. Moradi-Shoeili (2019). J. Clust. Sci. 30, 329.

    Article  CAS  Google Scholar 

  33. Z. Peng, J. Ni, K. Zheng, Y. Shen, X. Wang, G. He, and T. Tang (2013). Int. J. Nanomed. 8, 3093.

    Google Scholar 

  34. Y. Xu, M. T. Wei, H. D. Ou-Yang, S. G. Walker, H. Z. Wang, C. R. Gordon, and M. Rafailovich (2016). J. Nanobiotechnol. 14, 1.

    Article  Google Scholar 

  35. T. Isa, Z. A. B. Zakaria, Y. Rukayadi, M. N. Mohd Hezmee, A. Z. Jaji, M. U. Imam, and S. K. Mahmood (2016). Int. J. Mol. Sci. 17, 713.

    Article  Google Scholar 

  36. S. Xie, F. Yang, Y. Tao, D. Chen, W. Qu, L. Huang, and Z. Yuan (2017). Sci. Rep. 7, 41104.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the biology department of Islamic Azad University, Rasht, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Salehzadeh.

Ethics declarations

Conflict of interest

There is no conflict of interest related to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirbagheri, S.S., Salehzadeh, A. & Yakhchali, B. CuFe2O4@Ag Nanocomposite Synthesized in the Presence of Spirulina platensis Decreases the Expression of norB Gene in Staphylococcus aureus. J Clust Sci 33, 1025–1034 (2022). https://doi.org/10.1007/s10876-021-02018-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02018-3

Keywords

Navigation