Skip to main content
Log in

Biofabrication of Zinc Oxide Nanoparticles from Aspergillus niger, Their Antioxidant, Antimicrobial and Anticancer Activity

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The present study was aimed to green synthesis and characterization of zinc oxide nanoparticles (ZnONPs) from Aspergillus niger, which was evaluated for their antioxidant, antimicrobial and anticancer activity. The synthesised NPs were characterized by various analytical techniques such as UV–VIS Spectroscopy, FT-IR, XRD, DLS, SEM, and TEM. It was confirmed through the UV–Vis spectrophotometer; corresponding peaks were identified at 390 nm. The green synthesised ZnONPs were characterized by FT-IR studies to reveal the functional group attributed to the formation of ZnONPs. Morphological size of ZnONPs was 80–130 nm found through characterization by DLS, SEM, and TEM. Furthermore, the green synthesised ZnONPs showed potent antioxidant (ABTS and DPPH assay) antimicrobial activity against human pathogenic bacterial strains such as Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Enterobacter aerogenes. In addition, the green synthesised ZnONPs showed the dose-dependent cytotoxicity and apoptotic features in human hepatocellular carcinoma cells (HepG2). The overall findings of the study suggested that A. niger had a potential for the biosynthesis of ZnONPs as an alternative biomaterial for future therapeutic application as an antioxidant, antimicrobial and anticancer compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah (2018). Beilstein J. Nanotechnol. 9, 1050–1074. https://doi.org/10.3762/bjnano.9.98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. O. Bondarenko, A. Ivask, A. Kakinen, I. Kurvet, and A. Kahru (2013). PLoS ONE 8, e64060. https://doi.org/10.1371/journal.pone.0064060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. A. Nejabatdoust, A. Salehzadeh, H. Zamani, and Z. M. Shoeili (2019). J. Clust. Sci. 30, 329–336. https://doi.org/10.1007/s10876-018-01487-3.

    Article  CAS  Google Scholar 

  4. P. K. Mishra, H. Mishra, A. Ekielski, S. Talegaonkar, and B. Vaidya (2017). Drug Discov. Today 22, 1825–1834. https://doi.org/10.1016/j.drudis.2017.08.006.

    Article  CAS  PubMed  Google Scholar 

  5. B. Malaikozhundan, B. Vaseeharan, S. Vijayakumar, K. Pandiselvi, M. A. Kalanjiam, K. Murugan, and G. Benelli (2017). Microb. Pathog. 104, 268–277. https://doi.org/10.1016/j.micpath.2017.01.029.

    Article  CAS  PubMed  Google Scholar 

  6. C. Paulussen, J. E. Hallsworth, S. Alvarez-Perez, W. C. Nierman, P. G. Hamill, and D. Blain (2017). Microb. Biotechnol. 10, 296–322. https://doi.org/10.1111/1751-7915.12367.

    Article  PubMed  Google Scholar 

  7. O. S. Zmeili and A. O. Soubani (2007). QJM Int. J. Med. 100, 317–334. https://doi.org/10.1093/qjmed/hcm035.

    Article  CAS  Google Scholar 

  8. E. Schuster, N. Dunn-Coleman, J. Frisvad, and P. Van Dijck (2002). Appl. Microbiol. Biotechnol. 59, 426–435. https://doi.org/10.1007/s00253-002-1032-6.

    Article  CAS  PubMed  Google Scholar 

  9. H. L. Holland (1997). Adv. Appl. Microbiol. 44, 125–165.

    Article  CAS  PubMed  Google Scholar 

  10. A. K. Gade, P. Bonde, A. P. Ingle, P. D. Marcato, N. Duran, and M. K. Rai (2008). J. Biobased Mater. 2, 243–247. https://doi.org/10.1166/jbmb.2008.401.

    Article  Google Scholar 

  11. K. Kathiresan, N. M. Alikunhi, S. Pathmanaban, A. Nabikhan, and S. Kandasamy (2010). Can. J. Microbiol. 56, 1050–1059. https://doi.org/10.1139/W10-094.

    Article  CAS  PubMed  Google Scholar 

  12. R. Re, N. Pellegrini, A. Proteggente, M. Yang, and C. Rice-Evans (1999). Free Radic. Biol. Med. 26, 1231–1237.

    Article  CAS  PubMed  Google Scholar 

  13. K. Shimada, K. Fujikawa, K. Yahara, and T. Nakamura (1992). J. Agric. Food Chem. 40, 945–948.

    Article  CAS  Google Scholar 

  14. J. F. Hernandez-Sierra, F. Ruiz, D. C. Pena, F. Martinez-Gutierrez, A. E. Martinez, and A. D. Guillen (2008). Nanomed. Nanotechnol. 4, 237–240. https://doi.org/10.1016/j.nano.2008.04.005.

    Article  CAS  Google Scholar 

  15. S. H. Kim, H. S. Lee, D. S. Ryu, S. J. Choi, and D. S. Lee (2011). Korean J. Microbiol. Biotechnol. 39, 77–85. https://doi.org/10.5897/AJMR2016.7908.

    Article  CAS  Google Scholar 

  16. A. Alvarez-Ordonez, O. Alvseike, M. K. Omer, E. Heir, L. Axelsson, A. Holck, and M. Prieto (2013). Int. J. Food Microbiol. 161, 220–230. https://doi.org/10.1016/j.ijfoodmicro.2012.12.008.

    Article  CAS  PubMed  Google Scholar 

  17. M. B. Hansen, S. E. Nielsen, and K. Berg (1989). J. Immunol. Methods 119, 203–210. https://doi.org/10.1016/0022-1759(89)90397-9.

    Article  CAS  PubMed  Google Scholar 

  18. S. S. M. Hassan, W. I. M. El-Azab, H. R. Ali, and M. S. M. Mansour (2015). Adv. Nat. Sci. Nanosci. Nanotechnol. 6, 045012. https://doi.org/10.1088/2043-6262/6/4/045012.

    Article  CAS  Google Scholar 

  19. P. Jamdagni, P. Khatri, and J. S. Rana (2018). King Saud Univ. Sci. 30, 168–175. https://doi.org/10.1016/j.jksus.2016.10.002.

    Article  Google Scholar 

  20. S. M. Dhoble and N. S. Kulkarni (2016). Sch. Acad. J. Biosci. 11, 1022–1031. https://doi.org/10.21276/sajb.2016.4.11.9.

    Article  CAS  Google Scholar 

  21. D. Hernndez-Melendez, E. Salas-Tellez, A. Zavala-Franco, G. Tellez, A. Mendez-Albores, and A. Vazquez-Duran (2018). Materials 11, 1265. https://doi.org/10.3390/ma11081265.

    Article  Google Scholar 

  22. V. N. Kalpana, B. A. S. Kataru, N. Sravani, T. Vigneshwari, A. Panneerselvam, and V. Devi Rajeswari (2018). OpenNano 3, 48–55. https://doi.org/10.1016/j.onano.2018.06.001.

    Article  Google Scholar 

  23. E. E. Elemike, D. C. Onwudiwe, O. E. Fayemi, A. C. Ekennia, E. E. Ebenso, and L. R. Tiedt (2017). J. Clust. Sci. 28, 309–330. https://doi.org/10.1007/s10876-016-1087-7.

    Article  CAS  Google Scholar 

  24. L. L. Duffy, M. J. Osmond-McLeod, J. Judy, and T. King (2018). Food Control 92, 293–300. https://doi.org/10.1016/j.foodcont.2018.05.008.

    Article  CAS  Google Scholar 

  25. P. Kalyani, B. K. Lakshmi, G. Dinesh Reddy, and K. P. Hemalatha (2018). Int. J. Curr. Res. 7, 788–791.

    Google Scholar 

  26. A. Manke, L. Wang, and Y. Rojanasakul (2013). Biomed. Res. Int.. https://doi.org/10.1155/2013/942916.

    Article  PubMed  PubMed Central  Google Scholar 

  27. T. O. Ajiboye, A. O. Mohammed, S. A. Bello, I. I. Yusuf, O. B. Ibitoye, H. F. Muritala, and I. B. Onajobi (2016). Microb. Pathog. 95, 208–215. https://doi.org/10.1016/j.micpath.2016.03.011.

    Article  CAS  PubMed  Google Scholar 

  28. R. Sinha, R. Karan, A. Sinha, and S. K. Khare (2011). Bioresour. Technol. 102, 1516–1520. https://doi.org/10.1016/j.biortech.2010.07.117.

    Article  CAS  PubMed  Google Scholar 

  29. K. Steffy, G. Shanthi, A. S. Maroky, and S. Selvakumar (2018). J. Infect. Public Health 11, 463–471. https://doi.org/10.1016/j.jiph.2017.10.006.

    Article  PubMed  Google Scholar 

  30. Y. W. Wang, A. Cao, Y. Jiang, X. Zhang, J. H. Liu, Y. Liu, and H. Wang (2014). ACS Appl. Mater. Interfaces 6, 2791–2798. https://doi.org/10.1021/am4053317.

    Article  CAS  PubMed  Google Scholar 

  31. A. Aditya, S. Chattopadhyay, D. Jha, H. K. Gautam, S. Maiti, and M. Ganguli (2018). ACS Appl. Mater. Interfaces 10, 15401–15411. https://doi.org/10.1021/acsami.8b01463.

    Article  CAS  PubMed  Google Scholar 

  32. T. C. Dakal, A. Kumar, R. S. Majumdar, and V. Yadav (2016). Front. Microbiol. 7, 1831. https://doi.org/10.3389/fmicb.2016.01831.

    Article  PubMed  PubMed Central  Google Scholar 

  33. G. Baskar, J. Chandhuru, K. S. Fahad, A. S. Praveen, M. Chamundeeswari, and T. Muthukumar (2015). J. Mater. Sci. Mater. Med. 26, 43. https://doi.org/10.1007/s10856-015-5380-z.

    Article  CAS  Google Scholar 

  34. S. Majeed, M. Danish, and F. S. Norazmi (2018). Adv. Sci. Eng. Med. 1, 551–556. https://doi.org/10.14302/issn.2377-2549.jndc-18-2116.

    Article  Google Scholar 

  35. K. S. Siddiqi, A. Ur Rahman, and A. Husen (2018). Nanoscale Res Lett. 13, 141. https://doi.org/10.1186/s11671-018-2532-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. M. Arakha, J. Roy, P. S. Nayak, B. Mallick, and S. Jha (2017). Free Radic. Biol. Med. 110, 42–53. https://doi.org/10.1016/j.freeradbiomed.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ernest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Arokia Vijaya Anand, M., Ramachandran, V. et al. Biofabrication of Zinc Oxide Nanoparticles from Aspergillus niger, Their Antioxidant, Antimicrobial and Anticancer Activity. J Clust Sci 30, 937–946 (2019). https://doi.org/10.1007/s10876-019-01551-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01551-6

Keywords

Navigation