Skip to main content

Advertisement

Log in

Parental Consanguinity is Associated with a Severe Phenotype in Common Variable Immunodeficiency

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

The DEFI study has collected clinical data and biological specimens from kindreds with CVID. Patients with demonstrated parental consanguinity (cCVID group) were compared to patients without parental consanguinity (ncCVID). A total of 24 of the 436 patients with CVID had consanguineous parents. Age at first symptoms and age at diagnosis were comparable in the two groups. Some complications were more frequent in cCVID patients: splenomegaly (62.5% vs. 29%; p = 0.001), granulomatous disease (29% vs. 12%; p = 0.02), and bronchiectasis (58% vs. 29%; p = 0.003). A high incidence of opportunistic infections was also observed in this population (29% vs. 5%; p < 0.001). Distribution of B-cell subsets were similar in the two groups. Naïve CD4+ T cells were decreased in cCVID patients (15% vs. 28%; p < 0.001), while activated CD4 + CD95+ (88% vs. 74%; p = 0.002) and CD8 + HLA-DR + T cells (47% vs. 31%; p < 0.001) were increased in these patients when compared to ncCVID patients. Parental consanguinity is associated with an increased risk of developing severe clinical complications in patients with CVID. Most of these patients presented with severe T-cell abnormalities and should be considered with a diagnosis of late-onset combined immune deficiency (LOCID). Systematic investigation for parental consanguinity in patients with CVID provides useful information for specific clinical care and genetic screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

CVID:

Common variable immunodeficiency

cCVID:

Common variable immunodeficiency in patients with consanguineous parents

ncCVID:

Common variable immunodeficiency in patients with non-consanguineous parents

LOCID:

Late-onset combined immune deficiency

ICOS:

Inducible T-cell costimulator

BAFF-R:

B cell-activating factor receptor

TACI:

Transmembrane activator and CAML interactor

BLNK:

B-cell linker

EBV:

Epstein Barr virus

References

  1. Conley ME, Notarangelo LD, Etzioni A. Diagnostic criteria for primary immunodeficiencies. representing PAGID (Pan-American Group for Immunodeficiency) and ESID (European Society for Immunodeficiencies). Clin Immunol. 1999;93(3):190–7.

    Article  PubMed  CAS  Google Scholar 

  2. Cunningham-Rundles C. How I treat common variable immune deficiency. Blood. 2010;116(1):7–15.

    Article  PubMed  CAS  Google Scholar 

  3. Chapel H, Lucas M, Lee M, et al. Common variable immunodeficiency disorders: division into distinct clinical phenotypes. Blood. 2008;112(2):277–86.

    Article  PubMed  CAS  Google Scholar 

  4. Wehr C, Kivioja T, Schmitt C, et al. The EUROclass trial: defining subgroups in common variable immunodeficiency. Blood. 2008;111(1):77–85.

    Article  PubMed  CAS  Google Scholar 

  5. Mouillot G, Carmagnat M, Gérard L, et al. B-cell and T-cell phenotypes in CVID patients correlate with the clinical phenotype of the disease. J Clin Immunol. 2010;30(5):746–55.

    Article  PubMed  Google Scholar 

  6. Conley ME. Genetics of hypogammaglobulinemia: what do we really know? Curr Opin Immunol. 2009;21(5):466–71.

    Article  PubMed  CAS  Google Scholar 

  7. Grimbacher B, Hutloff A, Schlesier M, et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat Immunol. 2003;4(3):261–8.

    Article  PubMed  CAS  Google Scholar 

  8. Salzer U, Maul-Pavicic A, Cunningham-Rundles C, et al. ICOS deficiency in patients with common variable immunodeficiency. Clin Immunol. 2004;113(3):234–40.

    Article  PubMed  CAS  Google Scholar 

  9. van Zelm MC, Reisli I, van der Burg M, et al. An antibody-deficiency syndrome due to mutations in the CD19 gene. N Engl J Med. 2006;354(18):1901–12.

    Article  PubMed  Google Scholar 

  10. Kanegane H, Agematsu K, Futatani T, et al. Novel mutations in a Japanese patient with CD19 deficiency. Genes Immun. 2007;8(8):663–70.

    Article  PubMed  CAS  Google Scholar 

  11. Vince N, Boutboul D, Mouillot G, et al. Defects in the CD19 complex predispose to glomerulonephritis, as well as IgG1 subclass deficiency. J Allergy Clin Immunol. 2011;127(2):538–41. e1-5.

    Article  PubMed  CAS  Google Scholar 

  12. Kuijpers TW, Bende RJ, Baars PA, et al. CD20 deficiency in humans results in impaired T cell-independent antibody responses. J Clin Invest. 2010;120(1):214–22.

    Article  PubMed  CAS  Google Scholar 

  13. Warnatz K, Salzer U, Rizzi M, et al. B-cell activating factor receptor deficiency is associated with an adult-onset antibody deficiency syndrome in humans. Proc Natl Acad Sci U S A. 2009;106(33):13945–50.

    Article  PubMed  CAS  Google Scholar 

  14. van Zelm MC, Smet J, Adams B, et al. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J Clin Invest. 2010;120(4):1265–74.

    Article  PubMed  Google Scholar 

  15. The French national registry of primary immunodeficiency diseases. Clin Immunol. 2010;135(2):264–272.

    Google Scholar 

  16. Malphettes M, Gérard L, Carmagnat M, et al. Late-onset combined immune deficiency: a subset of common variable immunodeficiency with severe T cell defect. Clin Infect Dis. 2009;49(9):1329–38.

    Article  PubMed  CAS  Google Scholar 

  17. Conley ME, Dobbs AK, Farmer DM, et al. Primary B cell immunodeficiencies: comparisons and contrasts. Annu Rev Immunol. 2009;27:199–227.

    Article  PubMed  CAS  Google Scholar 

  18. Rezaei N, Pourpak Z, Aghamohammadi A, et al. Consanguinity in primary immunodeficiency disorders; the report from Iranian Primary Immunodeficiency Registry. Am J Reprod Immunol. 2006;56(2):145–51.

    Article  PubMed  Google Scholar 

  19. Al-Herz W, Naguib KK, Notarangelo LD, Geha RS, Alwadaani A. Parental consanguinity and the risk of primary immunodeficiency disorders: report from the Kuwait National Primary Immunodeficiency Disorders Registry. Int Arch Allergy Immunol. 2011;154(1):76–80.

    Article  PubMed  Google Scholar 

  20. Rezaei N, Aghamohammadi A, Moin M, et al. Frequency and clinical manifestations of patients with primary immunodeficiency disorders in Iran: update from the Iranian Primary Immunodeficiency Registry. J Clin Immunol. 2006;26(6):519–32.

    Article  PubMed  Google Scholar 

  21. Aghamohammadi A, Abolhassani H, Moazzami K, Parvaneh N, Rezaei N. Correlation between common variable immunodeficiency clinical phenotypes and parental consanguinity in children and adults. J Investig Allergol Clin Immunol. 2010;20(5):372–9.

    PubMed  CAS  Google Scholar 

  22. Oksenhendler E, Gérard L, Fieschi C, et al. Infections in 252 patients with common variable immunodeficiency. Clin Infect Dis. 2008;46(10):1547–54.

    Article  PubMed  Google Scholar 

  23. Giovannetti A, Pierdominici M, Mazzetta F, et al. Unravelling the complexity of T cell abnormalities in common variable immunodeficiency. J Immunol. 2007;178(6):3932–43.

    PubMed  CAS  Google Scholar 

  24. Eibel H, Salzer U, Warnatz K. Common variable immunodeficiency at the end of a prospering decade: towards novel gene defects and beyond. Curr Opin Allergy Clin Immunol. 2010;10(6):526–33.

    Article  PubMed  Google Scholar 

  25. Salzer U, Bacchelli C, Buckridge S, et al. Relevance of biallelic versus monoallelic TNFRSF13B mutations in distinguishing disease-causing from risk-increasing TNFRSF13B variants in antibody deficiency syndromes. Blood. 2009;113(9):1967–76.

    Article  PubMed  CAS  Google Scholar 

  26. Chapel H, Cunningham-Rundles C. Update in understanding common variable immunodeficiency disorders (CVIDs) and the management of patients with these conditions. Br J Haematol. 2009;145(6):709–27.

    Article  PubMed  CAS  Google Scholar 

  27. Schaffer FM, Palermos J, Zhu ZB, et al. Individuals with IgA deficiency and common variable immunodeficiency share polymorphisms of major histocompatibility complex class III genes. Proc Natl Acad Sci U S A. 1989;86(20):8015–9.

    Article  PubMed  CAS  Google Scholar 

  28. Sekine H, Ferreira RC, Pan-Hammarström Q, et al. Role for Msh5 in the regulation of Ig class switch recombination. Proc Natl Acad Sci U S A. 2007;104(17):7193–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The DEFI study was supported by a national program for clinical research (PHRC 2005) and by the National Center on Hereditary Immune Deficiencies (CEREDIH), by Laboratoire Français du Fractionnement et des Biotechnologies (LFB), Baxter BioScience, and CSL Behring.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Eric Oksenhendler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PPTX 207 kb)

ESM 2

(PPTX 518 kb)

Appendix

Appendix

DEFI study group

  • Coordination: E. Oksenhendler, Hôpital Saint Louis, Paris

  • Clinical Centers: Hôpital Saint Louis, Paris: C. Fieschi, M. Malphettes, L. Galicier, D. Boutboul, J.P. Fermand. Bordeaux: J.F. Viallard. Limoges: A. Jaccard. Tours: C. Hoarau, Y. Lebranchu. Hôpital Cochin, Paris: A. Bérezné, L. Mouthon. HEGP, Paris: M. Karmochkine, S. Georgin-Lavialle. Marseille: N. Schleinitz. Lyon Sud: I. Durieu, R. Nove-Josserand. Clermont-Ferrand: V. Chanet. Montpellier: V. Le-Moing. Roubaix: N. Just. Hôtel-Dieu, Paris: C. Salanoubat. Reims: R. Jaussaud. Hôpital Necker, Paris: F. Suarez, O. Hermine. Le Mans: P. Solal-Celigny. Lille: E. Hachulla. Perpignan: L. Sanhes. Angers: M. Gardembas, I. Pellier. Troyes: P. Tisserant. Lyon Armée: M. Pavic. Dijon: B. Bonnotte. Pitié-Salpêtrière, Paris: J. Haroche, Z. Amoura. Toulouse: L. Alric, M.F. Thiercelin, L. Tetu, D. Adoue. Nancy Vandoeuvre: P. Bordigoni. Lyon Croix Rousse: T. Perpoint. Lyon Hotel-Dieu: P. Sève. Besançon: P. Rohrlich. Strasbourg: J.L. Pasquali, P. Soulas. Hôpital Foch, Suresnes: L.J. Couderc, E. Catherinot. Montauban: P. Giraud. Hôpital Saint-Louis, Pédiatrie, Paris: A. Baruchel. Clermont-Ferrand 2: I. Deleveau. Kremlin-Bicêtre: F. Chaix. Hôpital Trousseau, Paris: J. Donadieu. Rouen: F. Tron. Bobigny: C. Larroche. Aix: AP Blanc. Nantes: A. Masseau, M. Hamidou. Nancy: G. Kanny, M. Morisset. Poitiers: F. Millot. Bondy: O. Fain. Hôpital Bichat, Paris: R. Borie. Rennes: A. Perlat. Clamart: V. Martinez. Caen: B. Bienvenu.

  • Labs

    Pitié-Salpêtrière, INSERM U543, Paris: P. Debré, G. Mouillot, I. Théodorou.

    Saint-Louis, Immunologie, Paris: C. Rabian, M. Carmagnat.

    Saint-Louis, EA 3963, Paris: C. Fieschi, M. Malphettes, N. Vince, D. Boutboul

  • Data Management and Statistics: L. Gérard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivoisy, C., Gérard, L., Boutboul, D. et al. Parental Consanguinity is Associated with a Severe Phenotype in Common Variable Immunodeficiency. J Clin Immunol 32, 98–105 (2012). https://doi.org/10.1007/s10875-011-9604-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-011-9604-9

Keywords

Navigation