Skip to main content

Advertisement

Log in

Chemical composition and source attribution of PM2.5 and PM10 in Delhi-National Capital Region (NCR) of India: results from an extensive seasonal campaign

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Ambient particulate matter concentrations in Delhi and its peripheral towns has been a matter of serious concern in the last decade. Understanding the changing nature of the chemical composition of particulates, their spatial and seasonal variability can be utilized for identifying probable sources. This study presents an extensive dataset of the chemical composition of PM2.5 and PM10 collected using speciation samplers, from 19 locations representing different activities and spread across Delhi–NCR during summer and winter seasons in the year 2016–17. Identification of contributing sources using chemical ratios as source indicators is attempted. A distinct seasonal variability in both PM2.5 and PM10 was observed, with winter maxima and summer minima. The fine fraction i.e. PM2.5 was dominated by organic matter (OM) with mean concentrations of 40.96±25.74 μg/m3 followed by Sulfate-Nitrate-Ammonium (SNA) ions (31.44±20.69 μg/m3) and Elemental Carbon (EC) (19.56±12.57 μg/m3); while the coarse fraction i.e. PM10 was dominated by OM (73.03±40.55 μg/m3) and SNA (47.25±30.56 μg/m3) along with significant contributions from crustal materials (40.85±18.89 μg/m3). The chemical ratios suggested mixed sources of PM with major contributions from vehicular emissions, re-suspended and/or construction dust, and fossil fuel combustion along with intermittent contributions from biomass and open waste burning. This analysis provides useful insights into the sources and processes affecting the particulate formation and underlines the need to control primary emissions as well as secondary precursors for air quality improvements in the region. The data generated under this campaign can also serve as an essential input for further evaluation using receptor modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams, P.J., Seinfeld, J.H., Koch, D.M.: Global concentrations of tropospheric sulfate, nitrate, and ammonium aerosol simulated in a general circulation model. J. Geophys. Res. 104(D11), 13791–13823 (1999)

    Google Scholar 

  • Al-Naiema, I.M., Hettiyadura, A.P.S., Wallace, H.W., Sanchez, N.P., Madler, C.J., Cevik, B.K., Bui, A.A.T., Kettler, J., Griffin, R.J., Stone, E.A.: Source apportionment of fine particulate matter in Houston, Texas: insights to secondary organic aerosols. Atmos. Chem. Phys. 18, 15601–15622 (2018). https://doi.org/10.5194/acp-18-15601-2018

    Article  Google Scholar 

  • Ali, K., Acharja, P., Trivedi, D.K., Kulkarni, R., Pithani, P., Safai, P.D., Chate, D.M., Ghude, S., Jenamani, R.K., Rajeevan, M.: Characterization and source identification of PM2.5 and its chemical and carbonaceous constituents during Winter Fog Experiment 2015–16 at Indira Gandhi International Airport, Delhi. Science of the Total Environment. 662, 687–696 (2019)

    Google Scholar 

  • Acharja, P., Ali, K., Trivedi, D.K., Safai, P.D., Ghude, S., Prabhakaran, T., Rajeevan, M.: Characterization of atmospheric trace gases and water soluble inorganic chemical ions of PM1 and PM2.5 at Indira Gandhi International Airport, New Delhi during 2017–18 winter. Science of the Total Environment. 729, 138800 (2020)

    Google Scholar 

  • Andreae, M.O.: Soot carbon and excess fine potassium: long-range transport of combustion derived aerosols. Science. 220, 1148–1151 (1983)

    Google Scholar 

  • Andreae, M.O., Merlet, P.: Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles. 15, 955–966 (2001)

    Google Scholar 

  • Arimoto, R., Duce, R.A., Savoie, D.L., Prospero, J., Talbot, R., Cullen, J., Tomza, U., Lewis, N., Ray, B.: Relationships among aerosol constituents from Asia and the North Pacific during PEM-west a. J. Geophys. Res. 101, 2011–2023 (1996)

    Google Scholar 

  • Balachandran, S., Meena, B.R., Khillare, P.K.: Particle size distribution and its elemental composition in the ambient air of Delhi. Environ. Int. 26, 49–54 (2000)

    Google Scholar 

  • Begum, B.A., Biswas, S.K., Markwitz, A., Hopke, P.K.: Identification of sources of fine and coarse particulate matter in Dhaka, Bangladesh. Aerosol Air Qual. Res. 10, 345–353 (2010). https://doi.org/10.4209/aaqr.2009.12.0082

    Article  Google Scholar 

  • Bhati, P., Pathania, R., Phadke, P., Gupta, R. K., Ramanathan, S.: Off Target - Status of Thermal Power Stations in Delhi NCR, Centre for Science and Environment, New Delhi (2018)

  • Cao, J.J., Lee, S.C., Ho, K.F., Zhang, X.Y., Zou, S.C., Fung, K., Chow, J.C., Watson, J.G.: Characteristics of carbonaceous aerosol in Pearl River Delta region, China during 2001 winter period. Atmos. Environ. 37, 1451–1460 (2003)

    Google Scholar 

  • Cao, J.J., Shen, Z.X., Chow, J.C., Watson, J.G., Lee, S.C., Tie, X.X., Ho, K.F., Wang, G.H., Han, Y.M.: Winter and Summer PM2.5 Chemical Compositions in Fourteen Chinese Cities. Journal of the Air & Waste Management Association. 62(10), 1214–1226 (2012). https://doi.org/10.1080/10962247.2012.701193

    Article  Google Scholar 

  • Castro, L.M., Pio, C.A., Harrison, R.M., Smith, D.J.T.: Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations. Atmos. Environ. 33(17), 2771–2781 (1999)

    Google Scholar 

  • CEA: All India Electricity Statistics: General Review 2018.Central electricity authority, Govt. of India (2018)

  • Chan, Y.C., Simpson, R.W., McTainsh, G.H., Vowles, P.D., Cohen, D.D., Bailey, G.M.: Characterisation of chemical species in PM2.5 PM10 aerosols in Brisbane. Australia Atmos Environ. 31, 3773–3785 (1997)

    Google Scholar 

  • Charron, A., Harrison, R.M.: Fine (PM2.5) and coarse (PM2.5–10) particulate matter on a heavily trafficked London highway: sources and processes. Environmental Science and Technology. 39, 768–7776 (2005)

    Google Scholar 

  • Chelani, A.B.: Study of extreme CO, NO2 and O3 concentrations at a traffic site in Delhi: statistical persistence analysis and source identification. Aerosol Air Qual. Res. 13, 377–384 (2013). https://doi.org/10.4209/aaqr.2011.10.0163

    Article  Google Scholar 

  • Chelani, A.B., Gajghate, D.G., Chalapati Rao, C.V., Devotta, S.: Particle size distribution in ambient air of Delhi and its statistical analysis. Bull. Environ. Contam. Toxicol. 85(1), 22–27 (2010)

    Google Scholar 

  • Cheng, S.H., Yang, L.X., Zhou, X.H., Xue, L.K., Gao, X.M., Zhou, Y., Wang, W.X.: Size-fractionated water-soluble ions, situ pH and water content in aerosol on hazy days and the influences on visibility impairment in Jinan. China. Atmos. Environ. 45(27), 4631–4640 (2011)

    Google Scholar 

  • Chester, R.: Marine Geochemistry. Unwin Hyman, London (1990)

    Google Scholar 

  • Cheung, K., Daher, N., Kam, V., Shafer, M.M., Ning, Z., Schauer, J.J., Sioutas, C.: Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM10-2.5) in the Los Angeles area. Atmos. Environ. 45, 2651–2662 (2011)

    Google Scholar 

  • Chow, J.C., Lowenthal, D.H., Chen, L.-W.A., Wang, X.L., Watson, J.G.: Mass reconstruction methods for PM2.5: A review. Air Qual. Atmos. Health. 8, 243–263 (2015). https://doi.org/10.1007/s11869-015-0338-3

    Article  Google Scholar 

  • Chow, J.C., Watson, J.G., Chen, L.-W.A., Chang, M.-C.O., Robinson, N.F., Trimble, D.L., Kohl, S.D.: The IMPROVE_a temperature protocol for thermal/optical carbon analysis: maintaining consistency with a long-term database. J. Air Waste Manage. Assoc. 57, 1014–1023 (2007)

    Google Scholar 

  • Chowdhury, Z., Zheng, M., Schauer, J.J., Sheesley, R.J., Salmon, L.G., Cass, G.R., Russell, A.G.: Speciation of fine organic carbon particles and source apportionment of PM2.5 in Indian cities. Journal of Geophysical Research. 112, D15303 (2007). https://doi.org/10.1029/2007JD008386

    Article  Google Scholar 

  • Councell, T.B., Duckenfield, K.U., Landa, E.R., Callender, E.: Tire-wear particles as a source of zinc to the environment. Environ. Sci. Technol. 38, 4206–4214 (2004). https://doi.org/10.1021/es034631f

    Article  Google Scholar 

  • CPCB: National Ambient air Quality Standards (2009)

  • CPCB: Air Quality Monitoring, Emission Inventory and Source Apportionment Study for Indian Cities: National Summary Report (2011a)

  • CPCB: Guidelines for the Measurement of Ambient Air Pollutants Volume-II. Central Pollution Control Board, Ministry of Environment & Forests, Govt. of India (2011b)

  • Decesari, S., Facchini, M.C., Carbone, C., Giulianelli, L., Rinaldi, M., Finessi, E., et al.: Chemical composition of PM10 and PM1 at the high-altitude Himalayan station Nepal Climate Observatory-Pyramid (NCO-P) (5079 m a.s.l.). Atmos Chem Phys. 10, 4583–4596 (2010)

    Google Scholar 

  • Directorate of Economics & Statistics: Website: http://des.delhigovt.nic.in/. Accessed: November, 2019

  • Echalar, F., Artaxo, P., Martins, J.V., Yamasoe, M., Gerab, F., Maenhaut, W., Holben, B.: Long-term monitoring of atmospheric aerosols in the Amazon Basin: source identification and apportionment. J. Geophys. Res. 103, 31849–31864 (1998)

    Google Scholar 

  • ENVIS: ENVIS Centre on Control of Pollution Water, Air and Noise, (2019) Website: http://www.cpcbenvis.nic.in/air_quality_data.html. Accessed: 15 April, 2020

  • Ferek, R.J., Reid, J.S., Hobbs, P.V., Blake, D.R., Liousse, C.: Emission factors of hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil. J. Geophys. Res. 103, 32107–32118 (1998)

    Google Scholar 

  • Gadi, R., Singh, D.P., Saud, T., Mandal, T.K., Saxena, M.: Emission Estimates of Particulate PAHs from Biomass Fuels Used in Delhi, India. Hum Ecol Risk Assess. 18, 871–887 (2012)

    Google Scholar 

  • Gani, S., Bhandari, S., Seraj, S., Wang, D.S., Patel, K., Soni, P., Arub, Z., Habib, G., Hildebrandt Ruiz, L., Apte, J.S.: Submicron aerosol composition in the world's most polluted megacity: the Delhi aerosol supersite study. Atmos. Chem. Phys. 19, 6843–6859 (2019). https://doi.org/10.5194/acp-19-6843-2019

    Article  Google Scholar 

  • Garg, B.D., Cadle, S.H., Mulawa, P.A., Groblicki, P.J., Laroo, C., Parr, G.A.: Brake wear particulate matter emissions. Environ. Sci. Technol. 34, 4463–4469 (2000)

    Google Scholar 

  • Ghosh, S., Biswas, J., Guttikunda, S., Roychowdhury, S., Nayak, M.: An investigation of potential regional and local source regions affecting fine particulate matter concentrations in Delhi. India. Journal of the Air & Waste Management Association. 65(2), 218–231 (2015)

    Google Scholar 

  • Gorai, A.K., Tchounwou, P.B., Biswal, S.S., Tuluri, F.: Spatio-Temporal Variation of Particulate Matter (PM2.5) Concentrations and Its Health Impacts in a Mega City, Delhi in India. Environmental Health Insights. 12, 1–9 (2018)

    Google Scholar 

  • Gupta, M., Mohan, M.: Assessment of contribution to PM10 concentrations from long range transport of pollutants using WRF/Chem over a subtropical urban airshed. Atmospheric Pollution Research. 4(4), 405–410 (2013). https://doi.org/10.5094/APR.2013.046

    Article  Google Scholar 

  • He, H., Vinnikov, K.Y., Li, C., Krotkov, N.A., Jongeward, A. R., Li, Z., Stehr, J. W., Hains, J. C., Dickerson, R. R.: Response of SO2 and particulate air pollution to local and regional emission controls: A case study in Maryland, Earth’s Future, 494–109 (2016). doi:https://doi.org/10.1002/2015EF000330

  • Health Effects Institute: State of Global Air 2019. Special Report. Boston, MA: Health Effects Institute. ISSN 2578–6873 (2019)

  • Ho, K.F., Lee, S.C., Chan, C.K., Yu, J.C., Chow, J.C., et al.: Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong. Atmos. Environ. 37, 31–39 (2003)

    Google Scholar 

  • Huang, X., Liu, Z., Liu, J., Hu, B., Wen, T., Tang, G., Zhang, J., Wu, F., Ji, D., Wang, L., Wang, Y.: Chemical characterization and source identification of PM2.5 at multiple sites in the Beijing–Tianjin–Hebei region, China. Atmos. Chem. Phys. 17, 12941–12962 (2017). https://doi.org/10.5194/acp-17-12941-2017

    Article  Google Scholar 

  • Huang, X.H., Bian, Q., Ng, W.M., Louie, P.K., Yu, J.Z.: Characterization of PM2.5 Major Components and Source Investigation in Suburban Hong Kong: A One Year Monitoring Study. Aerosol Air Qual. Res. 14, 237–250 (2014). https://doi.org/10.4209/aaqr.2013.01.0020

    Article  Google Scholar 

  • Jaiprakash, S.A., Habib, G., Raman, R.S., Gupta, T.: Chemical characterization of PM1 aerosol in Delhi and source apportionment using positive matrix factorization. Environ. Sci. Pollut. Res. 24, 445–462 (2017). https://doi.org/10.1007/s11356-016-7708-8

    Article  Google Scholar 

  • Jiang, S.Y.N., Yang, F., Chan, K.L., Ning, Z.: Water solubility of metals in coarse PM and PM2.5 in typical urban environment in Hong Kong. Atmospheric Pollution Research. 5(2), 236–244 (2014)

    Google Scholar 

  • Katzman, T.L., Rutter, A.P., Schauer, J.J., et al.: PM2.5 and PM10-PM2.5 compositions during wintertime episodes of elevated PM concentrations across the Midwestern USA. Aero Air Qual Res. 10, 140–153 (2010)

    Google Scholar 

  • Kerminen, V.M., Hillamo, R., Teinilä, K., Pakkanen, T., Allegrini, I., Sparapani, R.: Ion balances of size-resolved tropospheric aerosol samples: implications for the acidity and atmospheric processing of aerosols. Atmos. Environ. 35(31), 5255–5265 (2001)

    Google Scholar 

  • Khillare, P.K., Balachandran, S., Meena, B.R.: Spatial and temporal variation of heavy metals in atmospheric aerosol in India. Environ. Monit. Assess. 90, 1–21 (2004)

    Google Scholar 

  • Khoder, M.I.: Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area. Chemosphere. 49, 675–684 (2002). https://doi.org/10.1016/S0045-6535(02)00391-0

    Article  Google Scholar 

  • Kim, B.M., Teffera, S., Zeldin, M.D.: Characterization of PM2.5 and PM10 in the South Coast Air Basin of Southern California: Part 1–Spatial variations. J. Air Waste Manage. Assoc. 50, 2034–2044 (2000)

    Google Scholar 

  • Kulshrestha, A., Gursumeeran Satsangi, P., Masih, J., Taneja, A.: Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India. Science of the Total Environment. 407, 6196–6204 (2009)

    Google Scholar 

  • Li, W., Bai, Z., Liu, A., Chen, J., Chen, L.: Characteristics of major PM2.5 components during winter in Tianjin, China. Aerosol and air quality. Research. 9(1), 105–119 (2009)

    Google Scholar 

  • Liu, Z., Gao, W., Yu, Y., Hu, B., Xin, J., Sun, Y., Wang, L., Wang, G., Bi, X., Zhang, G., Xu, H., Cong, H., He, J., Xu, J., Wang, Y.: Characteristics of PM2:5 mass concentrations and chemical species in urban and background areas of China: emerging results from the CARE-China network. Atmos. Chem. Phys. 18, 8849–8871 (2018). https://doi.org/10.5194/acp-18-8849-2018

    Article  Google Scholar 

  • Malm, W.C., Sisler, J.F., Huffman, D., Eldred, R.A., Cahill, T.A.: Spatial and seasonal trends in particle concentration and optical extinction in the United States. J. Geophys. Res. 99, 1347–1370 (1994)

    Google Scholar 

  • Megaritis, A.G., Fountoukis, C., Charalampidis, P.E., Pilinis, C., Pandis, S.N.: Response of fine particulate matter concentrations to changes of emissions and temperature in Europe. Atmos. Chem. Phys. 13, 3423–3443 (2013). https://doi.org/10.5194/acp-13-3423-2013

    Article  Google Scholar 

  • Mihalopoulos, N., Kerminen, V.M., Kanakidou, M., Berresheim, H., Sciare, J.: Formation of particulate sulfur species (sulfate and methanesulfonate) during summer over the eastern Mediterranean: a modelling approach. Atmos. Environ. 41, 6860–6871 (2007). https://doi.org/10.1016/j.atmosenv.2007.04.039

    Article  Google Scholar 

  • Mishra, A., Gaur, A., Bhattu, D., Ghosh, S., Dwivedi, A.K., Dalai, A.R., Paul, A.D., Gupta, T., Tare, V., Mishra, S.K., Singh, S., Tripathi, S.N.: An overview of the physicochemical characteristics of dust at Kanpur in the central Indo-Gangetic basin. Atmos. Environ. 97, 386–396 (2014)

    Google Scholar 

  • Mkoma, S., Kawamura, K., Fu, P.: Contributions of biomass/biofuel burning to organic aerosols and particulate matter in Tanzania, East Africa, based on analyses of ionic species, organic and elemental carbon, levoglucosan and mannosan. Atmos. Chem. Phys. 13, 10325–10338 (2013)

    Google Scholar 

  • Mohan, M., Bhati, S.: Analysis of WRF model performance over subtropical region of Delhi, India. Advances in Meteorology. Art. no. 621235 (2011)

  • Moldovan, M., Palacios, M.A., Gómez, M.M., Morrison, G., Rauch, S., McLeod, C., Ma, R., Caroli, S., Alimonti, A., Petrucci, F., Bocca, B., Schramel, P., Zischka, M., Pettersson, C., Wass, U., Luna, M., Saenz, J.C., Santamaría, J.: Environmental risk of particulate and soluble platinum group elements released from gasoline and diesel engine catalytic converters. Science of The Total Environment. 296(1–3), 199–208 (2002). https://doi.org/10.1016/S0048-9697(02)00087-6

    Article  Google Scholar 

  • Nagar, P.K., Singh, D., Sharma, M., Kumar, A., Aneja, V.P., George, M.P., Agarwal, N., Shukla, S.P.: Characterization of PM2.5 in Delhi: role and impact of secondary aerosol, burning of biomass, and municipal solid waste and crustal matter. Environ Sci Pollut Res. 24, 25179–25189 (2017)

    Google Scholar 

  • NCR Planning Board: NCR Planning Board Website: http://ncrpb.nic.in/. Accessed Nov 2019 (2019)

  • NEERI : Air Quality Monitoring, Emission Inventory & Source Apportionment Studies for Delhi. Prepared by National Environmental Engineering Research Institute, Nagpur, India (2010)

  • Niu, X., Cao, J., Shen, Z., et al.: PM2.5 from the Guanzhong Plain: Chemical composition and implications for emission reductions. Atmospheric Environment. 147, 458–469 (2016)

    Google Scholar 

  • Palacios, M.A., Gomez, M.M., Moldovan, M., Morrison, G., Rauch, S., McLeod, C., Ma, R., Laserna, J., Lucena, P., Caroli, S., Alimonti, A., Schramel, P., Lustig, S., Wass, U., Stenbom, B., Luna, M., Saenz, J.C., Santamarıa, J., Torrens, J.M.: Platinum group elements: quantification in collected exhaust fumes and studies of catalytic surfaces. Sci. Total Environ. 257, 1–15 (2000)

    Google Scholar 

  • Pandey, P., Patel, D.K., Khan, A.H., Barman, S.C., Murthy, R.C., Kisku, G.C.: Temporal distribution of fine particulates (PM2.5, PM10), potentially toxic metals, PAHs and Metal-bound carcinogenic risk in the population of Lucknow City, India. Journal of Environmental Science and Health, Part A. 48, 730–745 (2013)

    Google Scholar 

  • Pandis, S.N., Seinfeld, J.H., Pilinis, C.: Heterogeneous sulfate production in an urban fog. Atmos. Environ. Part A. 26(14), 2509–2522 (1992)

    Google Scholar 

  • Pant, P., Shukla, A., Kohl, S.D., Chow, J.C., Watson, J.G., Harrison, R.M.: Characterization of ambient PM2.5 at a pollution hotspot in New Delhi, India and inference of sources. Atmos Environ. 109, 178–189 (2015)

  • Pant, P., Harrison, R.M.: Critical review of receptor modelling for particulate matter: a case study of India. Atmos. Environ. 49, 1–12 (2012)

    Google Scholar 

  • Park, J.M., Han, Y.J., Cho, S.H., Kim, H.W.: Characteristics of Carbonaceous PM2.5 in a Small Residential City in Korea. Atmosphere. 9, 490 (2018). https://doi.org/10.3390/atmos9120490

    Article  Google Scholar 

  • Peltier, R., Lippmann, M.: Residual oil combustion: 2. Distributions of airborne nickel and vanadium within New York City. J Expo Sci Environ Epidemiol. 20, 342–350 (2010). https://doi.org/10.1038/jes.2009.28

    Article  Google Scholar 

  • Pope III, C.A., Burnett, R.T., Thun, M.J., et al.: Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc. 287(9), 1132–1141 (2002)

    Google Scholar 

  • Pope III, C.A., Dockery, D.W.: Health effects of fine particulate air pollution: lines that connect. J. Air Waste Manag. Assoc. 56, 709–742 (2006)

    Google Scholar 

  • Rai, P., Furger, M., Haddad, I.E., Kumar, V., Wang, L., Singh, A., Dixit, K., Bhattu, D., Petit, J.E., Ganguly, D., Rastogi, N., Baltensperger, U., Tripathi, S.N., Slowik, J.G., Prévôt, A.S.H.: Real-time measurement and source apportionment of elements in Delhi's atmosphere. Science of the Total Environment. 742, 140332 (2020)

    Google Scholar 

  • Ram, K., Sarin, M.M.: Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over northern India. J. Aerosol Sci. 41(1), 88–98 (2010)

    Google Scholar 

  • Ram, K., Sarin, M.M.: Day-night variability of EC, OC, WSOC and inorganic ions in urban environment of Indo-Gangetic Plain: Implications to secondary aerosol formation. Atmospheric Environment. 45, 460–468 (2011)

    Google Scholar 

  • Rengarajan, R., Sudheer, A.K., Sarin, M.M.: Wintertime PM2.5 and PM10 carbonaceous and inorganic constituents from urban site in western India. Atmospheric Research. 102, 420–431 (2011)

    Google Scholar 

  • Salameh, D., Detournay, A., et al.: PM2.5 chemical composition in five European Mediterranean cities: A 1-year study. Atmospheric Research. 155, 102–117 (2014)

    Google Scholar 

  • Saxena, M., Sharma, A., Sen, A., Saxena, P., Saraswati, Mandal, T.K., Sharma, S.K., Sharma, C.: Water Soluble Inorganic Species of PM10 and PM2.5 at an Urban Site of Delhi, India: Seasonal variability and sources, Atmospheric Research (2016). doi: https://doi.org/10.1016/j.atmosres.2016.10.005

  • Saxena, M., Singh, D.P., Saud, T., Gadi, R., Singh, S., Sharma, S., Mandal, T.K.: Source apportionment of particulates by receptor models over bay of Bengal during ICARB campaign. Atmos. Poll. Res. 5, 729–740 (2014)

    Google Scholar 

  • Sen, I.S., Mitra, A., Peucker-Ehrenbrink, B., Rothenberg, S.E., Tripathi, S.N., Bizimis, M.: Emerging airborne contaminants in India: platinum group elements from catalytic converters in motor vehicles. Appl. Geochem. 75, 100–106 (2016). https://doi.org/10.1016/j.apgeochem.2016.10.006

    Article  Google Scholar 

  • Sharma, S.K., Mandal, T.K., Saxena, M., Rashmi, R., Sharma, A., Gautam, R.: Variation of OC, EC, WSIC and trace metals of PM10 in Delhi. J Atmos Sol Terr Phys. 113, 10–22 (2014a)

    Google Scholar 

  • Sharma, H., Jain, V.K., Khan, Z.H.: Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in the urban environment of Delhi. Chemosphere. 66, 302–310 (2007)

    Google Scholar 

  • Sharma, M., and Dikshit, O.: Comprehensive Study on Air Pollution and Green House Gases (GHGs) in Delhi. Final Report: Air Pollution component (2016)

  • Sharma, S.K., Mandal, T.K., Jain, S., Sarawati, Sharma, A., Saxena, M.: Source Apportionment of PM2.5 in Delhi, India Using PMF Model. Bull Environ Contam Toxicol. 97, 286–293 (2016). https://doi.org/10.1007/s00128-016-1836-1

    Article  Google Scholar 

  • Sharma, S.K., Mandal, T.K., Saxena, M., Sharma, A., Gautam, R.: Source apportionment of PM10 by using positive matrix factorization at an urban site of Delhi, India. Urban climate. 10, 656–670 (2014b)

    Google Scholar 

  • Shen, Z., Cao, J., Zhang, L., Liu, L., Zhang, Q., Li, J., Han, Y., Zhu, C., Zhao, Z., Liu, S.: Day–night differences and seasonal variations of chemical species in PM10 over Xi'an, Northwest China. Environ. Sci. Pollut. Res. 21, 3697–3705 (2014)

    Google Scholar 

  • Shridhar, V., Khillare, P.S., Agarwal, T., Ray, S.: Metallic species in ambient particulate matter at rural and urban location of Delhi. J. Hazard. Mater. 175, 600–607 (2010)

    Google Scholar 

  • Singh, D.P., Gadi, R., Mandal, T.K., Saud, T., Saxena, M., Sharma, S.K.: Emissions estimates of PAH from biomass fuels used in rural sector of indo-Gangetic Plains of India. Atmos. Environ. 68, 120–126 (2013)

    Google Scholar 

  • Snider, G., Weagle, C.L., Murdymootoo, K.K., Ring, A., Ritchie, Y., Stone, E., Walsh, A., Akoshile, C., Anh, N.X., Balasubramanian, R., Brook, J., Qonitan, F.D., Dong, J., Griffith, D., He, K., Holben, B.N., Kahn, R., Lagrosas, N., Lestari, P., Ma, Z., Misra, A., Norford, L.K., Quel, E.J., Salam, A., Schichtel, B., Segev, L., Tripathi, S., Wang, C., Yu, C., Zhang, Q., Zhang, Y., Brauer, M., Cohen, A., Gibson, M.D., Liu, Y., Martins, J.V., Rudich, Y., Martin, R.V.: Variation in global chemical composition of PM2.5: emerging results from SPARTAN. Atmos. Chem. Phys. 16, 9629–9653 (2016). https://doi.org/10.5194/acp-16-9629-2016

    Article  Google Scholar 

  • Srinivas, B., Sarin, M.M.: PM2.5, EC and OC in atmospheric outflow from the Indo-Gangetic Plain: Temporal variability and aerosol organic carbon-to-organic mass conversion factor. Science of the Total Environment. 487, 196–205 (2014)

    Google Scholar 

  • Srivastava, A., Gupta, S., Jain, V.K.: Source Apportionment of Total Suspended Particulate Matter in Coarse and Fine Size Ranges Over Delhi. AAQR 8(2), 188–200 (2008)

    Google Scholar 

  • Sun, Y., Zhuang, G., Tang, A., Wang, Y., An, Z.: Chemical Characteristics of PM2.5 and PM10 in Haze−Fog Episodes in Beijing. Environ. Sci. Technol. 40(10). 3148–3155 (2006).  https://doi.org/10.1021/es051533g

  • Taylor, S.R., McLennan, S.M.: The Continental Crust: its Composition and Evolution. Blackwell, Oxford (1985)

    Google Scholar 

  • Trivedi, D.K., Ali, K., Beig, G.: Impact of meteorological parameters on the development of fine and coarse particles over Delhi. Sci. Total Environ. 478, 175–183 (2014)

    Google Scholar 

  • Turpin, B.J., Lim, H.J.: Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci Technol. 35, 602–610 (2001)

    Google Scholar 

  • WHO: Global Air Quality Database App: App for exploring air quality in countries. WHO Global Air Quality Database (update 2018) edition. Version 1.0. Geneva, World Health Organization (2018)

  • World Bank and Institute for Health Metrics and Evaluation: The Cost of Air Pollution: Strengthening the Economic Case for Action. Washington, DC: World Bank (2016)

  • Wu, C., Yu, J.Z.: Determination of primary combustion source organic carbon-to-elemental carbon (OC / EC) ratio using ambient OC and EC measurements: secondary OC-EC correlation minimization method. Atmos. Chem. Phys. 16, 5453–5465 (2016). https://doi.org/10.5194/acp-16-5453-2016

    Article  Google Scholar 

  • Zhang, W.J., Sun, Y.L., Zhuang, G.S., Xu, D.Q.: Characteristics and seasonal variations of PM2.5, PM10, and TSP aerosol in Beijing. Biomed. Environ. Sci. 19, 461–468 (2006)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Director-ARAI for support and guidance throughout the execution of the project. The authors would also like to sincerely thank Department of Heavy Industry- Ministry of Heavy Industries & Public Enterprises, Government of India for supporting the study.

Availability of data and material

Not applicable.

Funding

This study was supported by Department of Heavy Industry- Ministry of Heavy Industries & Public Enterprises, Government of India under the grant no. 7(29)/2015-AEI.

Author information

Authors and Affiliations

Authors

Contributions

Moqtik Bawase: Conceptualization, Methodology, Writing - Review & Editing, Project administration, Funding acquisition

Yogesh Sathe: Formal analysis, Visualization, Software, Writing - Original Draft, Writing - Review & Editing

Hemant Khandaskar: Investigation, Data Curation, Validation

Sukrut Thipse: Supervision, Writing - Review & Editing

Corresponding author

Correspondence to Moqtik Bawase.

Ethics declarations

Conflicts of interest/competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bawase, M., Sathe, Y., Khandaskar, H. et al. Chemical composition and source attribution of PM2.5 and PM10 in Delhi-National Capital Region (NCR) of India: results from an extensive seasonal campaign. J Atmos Chem 78, 35–58 (2021). https://doi.org/10.1007/s10874-020-09412-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-020-09412-7

Keywords

Navigation