Skip to main content

Advertisement

Log in

Biogenic hydrogen sulphide emissions and non-sea sulfate aerosols over the Indian Sundarban mangrove forest

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Temporal variations in atmospheric hydrogen sulphide concentrations and its biosphere-atmosphere exchanges were studied in the World’s largest mangrove ecosystem, Sundarbans, India. The results were used to understand the possible contribution of H2S fluxes in the formation of atmospheric aerosol of different size classes (e.g. accumulation, nucleation and coarse mode). The mixing ratio of hydrogen sulphide (H2S) over the Sundarban mangrove atmosphere was found maximum during the post-monsoon season (October to January) with a mean value of 0.59 ± 0.02 ppb and the minimum during pre-monsoon (February to May) with a mean value of 0.26 ± 0.01 ppb. This forest acted as a perennial source of H2S and the sediment-air emission flux ranged between 1213 ± 276 μg S m−2 d−1(December) and 457 ± 114 μg S m−2 d−1 (August) with an annual mean of 768 ± 240 μg S m−2d−1. The total annual emissions of H2S from the Indian Sundarban were estimated to be 1.2 ± 0.6 Tg S. The accumulation mode of aerosols was found to be more enriched with non-sea salt sulfate with an average loading of 5.74 μg m−3 followed by the coarse mode (5.18 μg m−3) and nucleation mode (1.18 μg m−3). However, the relative contribution of Non-sea salt sulfate aerosol to total sulfate aerosol was highest in the nucleation mode (83%) followed by the accumulation (73%) and coarse mode (58%). Significant positive relations between H2S flux and different modes of NSS indicated the likely link between H2S, a dominant precursor for the non-sea salt sulfate, and non-sea sulfate aerosol particles. An increase in H2S emissions from the mangrove could result in an increase in enhanced NSS in aerosol and associated cloud albedo, and a decrease in the amount of incoming solar radiation reaching the Sundarban mangrove forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams, D.F., Farwell, S.O., Robinson, E., Pack, M.R., Bamesberger,W.L.: Biogenic sulfur source strengths. Environ. Sci. Technol. 15, 1493–1498 (1981)

    Article  Google Scholar 

  • Alongi, D.M., Boto, K.G., Robertson, A.I.: Nitrogen and phosphorous cycles. In: Robertson, A.I., Alongi, D.M. (eds.) Tropical Mangrove Ecosystems. AGU, Washington, DC, pp. 251–292 (1992)

    Chapter  Google Scholar 

  • Alongi, D.M., Christoffersen, P., Tirendi, F.: The influence of forest type on microbial-nutrient relationships in tropical mangrove sediments. J. Exp. Mar. Biol. Ecol. 171, 201–223 (1993)

    Article  Google Scholar 

  • Aneja, V.P.: Natural sulfur emissions into the atmosphere. J. Air Waste Manag. Assoc. 40, 469–476 (1990)

    Article  Google Scholar 

  • Aneja, V. P., Overton, Jr., J. H., Cupitt, L. T., Durham, J. L., Wilson, W. E.: Direct measurements of emission rates of some atmospheric biogenic sulfur compounds. Tellus 31, 174–178 (1979)

    Article  Google Scholar 

  • Atkinson, R.: Baulch2 D. L., cox, R. a., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J., evaluated kinetic and photochemical data for atmospheric chemistry: volume I - gas phase reactions of O-x, HOx, NOx and SOx species. Atmos. Chem. Phys. 4, 1461–1738 (2004)

    Article  Google Scholar 

  • Azad, M.A.K., Ohira, S.I., Oda, M., Tod, K.: On-site measurements of hydrogen sulfide and sulfur dioxide emissions from tidal flat sediments of Ariake Sea, Japan. Atmos. Environ. 39, 6077–6087 (2005)

    Article  Google Scholar 

  • Barrett, K.: Oceanic ammonia emissions in the Europe and their trans boundary fluxes. Atmos. Environ. 32, 381–391 (1998)

    Article  Google Scholar 

  • Berner, R.A.: Sedimentary pyrite formation: an update. Geochem. Cosmochim. Ac. 48, 605–615 (1984)

    Article  Google Scholar 

  • Biswas, H., Mukhopadhyay, S.K., De, T.K., Sen, S., Jana, T.K.: Biogenic controls on the air–water carbon dioxide exchange in the Sundarban mangrove environment, northeast coast of bay of Bengal, India. Limnol. Oceanograph. 49, 95–101 (2004)

    Article  Google Scholar 

  • Bodenbender, J., Wassmann, R., Papen, H., Rennenberg, H.: Temporal and spatial variation of sulfur-gas-transfer between coastal marine sediments and the atmosphere. Atmos. Environ. 33, 3487–3502 (1999)

    Article  Google Scholar 

  • Caldeira, K., Wood, L.: Global and Arctic climate engineering: numerical model studies. Phil. Trans. R. Soc. A. 366, 4039–4056 (2008). https://doi.org/10.1098/rsta.2008.0132

    Article  Google Scholar 

  • Canfield, D.E., Thamdrup, B., Hansen, J.W.: The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochim. Cosmochim. Ac. 57, 3867–3883 (1993)

    Article  Google Scholar 

  • Castro, M., Dierberg, F.E.: Biogenic hydrogen sulfide emissions from elected Florida wetlands. Water Air Soil Poll. 33, 1–13 (1987)

    Article  Google Scholar 

  • Chakrabarty, K.: Sundarban mangrove in India - a study of conservation status. The Indian Forester. 113, 352–358 (1987)

    Google Scholar 

  • Charlson, R.J., Wigley, T.M.L.: Sulfate aerosol and climatic change. Sci. Am. 270, 48–57 (1994)

    Article  Google Scholar 

  • Chatterjee, A., Dutta, C., Sen, S., Ghosh, K., Biswas, N., Ganguly, D., Jana, T.K.: Formation, transformation, and removal of aerosol over a tropical mangrove forest. J. Geophys. Res. 111:D24302, (2006) https://doi.org/10.1029/2006JD007144, 1-10

  • Christian, G.D.: Analytical Chemistry, 5th edn. Wiley, New York (2001)

    Google Scholar 

  • Crutzen, P.J.: Albedo enhancement by stratospheric sulfur injections: a contribution toresolve a policy dilemma? Clim. Chang. 77, 211–220 (2006)

    Article  Google Scholar 

  • Delmas, R., Baudet, J., Servant, J., Baziard, Y. Emissions and concentrations of hydrogen sulfide in the air of tropical forest in the Ivory Coast and of temperate regions in France. Journal of Geophysical Research 85, 4468–4474 (1980)

    Article  Google Scholar 

  • Dey, M., Ganguly, D., Chowdhury, C., Majumder, N., Jana, T.K.: Intra-annual variation of modern foraminiferal assemblage in a tropical mangrove ecosystem in India. Wetlands. 32, 813–826 (2012). https://doi.org/10.1007/s13157-012-0312-x

    Article  Google Scholar 

  • Dohnalek, D.A., FitzPatrick, J.A.: The chemistry of reduced Sulphur species and their removal from groundwater supplies. J. Am. Water Works Assoc. 75(6), 298–308 (1983)

    Article  Google Scholar 

  • Feilberg, A., Hansen, M.J., Liu, D., Nyord, T.: Contribution of livestock H2S to total sulfur emissions in a region with intensive animal production. NatureCommunications. 8(1069), 1069 (2017). https://doi.org/10.1038/s41467-017-01016-2

    Article  Google Scholar 

  • Fowler, D., and Duyzer, J. H. : Micrometeorological Techniques for the measurement of tree gas exchange In: M. O. Andreae and D. S. Schimel (eds.) Exchange of trace gases between terrestrial ecosystems and the atmosphere, pp189–207,(1989) John Wiley & Sons Ltd. New York

  • Ganguly, D., M. Dey, S. Sen, and T. K. Jana, Biosphere-atmosphere exchange of NOx in the tropical mangrove forest, Journal of Geophysical Research (Biogeosciences), 114, G04014, doi:https://doi.org/10.1029/2008JG000852 (2009)

  • Gao, Y., Arimoto, R., Duce, R.A., Chen, L.Q., Zhou, M.Y., Gu, D.Y.: Atmospheric non-sea-salt sulfate, nitrate and methane sulfonate over the China Sea. J. Geophys. Res.-Atmos. 101, 12601–12611 (1996)

    Article  Google Scholar 

  • Ghahremaninezhad, R., Norman, A.L., Abbatt, J.P.D., Levasseur, M., Thomas, J.L.: Biogenic, anthropogenic and sea salt sulfate size-segregated aerosols in the Arctic summer. Atmos. Chem. Phys. 16, 5191–5202 (2016)

    Article  Google Scholar 

  • Ghosh, A., Dey, N., Bera, A., Tiwari, A., Sathyaniranjan, K.B., Chakrabarti, K., Chattopadhyay, D.: Culture independent molecular analysis of bacterial communities in the mangrove sediment of Sundarban, India. Saline. Syst. 6(1), 1 (2010). https://doi.org/10.1186/1746-1448-6-1

    Article  Google Scholar 

  • Graedel, T.E., Crutzen, P.J.: Atmospheric change. W. H. Freeman and Company, New york. 296 (1993)

  • Hansen, M.H., Ingvorsen, K., Jorgensen, B.B.:Mechanisms of Hydrogen-Sulfide Release from Coastal Marine-Sediments to Atmosphere' Limnol. Oceanogr. 23, 68 (1978), 76.

  • Hansen, J., Lacis, A., Ruedy, R., Sato, M.: Potential climate impact of Mount Pinatubo Eruption. Geophys. Res. Lett. 19, 215–218 (1992)

    Article  Google Scholar 

  • Hoigne, J., Bader, H., Haag, W.R., Staehelin, J.: Rate constants of reactions of ozone with organic and inorganic-compounds in water 3. Inorganic-compounds and radicals. Water Res. 19, 993–1004 (1985)

    Article  Google Scholar 

  • IPCC: Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC 1892 Emission Scenarios. In: Houghton, J.T., Meira Filho, L.G., Bruce, J., Lee, H., Callander, B.A., Haites, E., Harris, N., Maskell, K. (eds.). Cambridge University Press, Cambridge (1994)

  • Istvan, D., Delaune, R.D.: Formation of volatile sulfur compounds in salt marsh sediment as influenced by soil redox condition. Organic Geochem. 23, 283–287 (1995)

    Article  Google Scholar 

  • Jaeschke, W., Georgii, H.W., Claude, H., Malewski, H.: Contributions of H2S to the atmospheric sulfur cycle. Pure Appl. Geophys. 116, 465–475 (1978)

    Article  Google Scholar 

  • Jones, A., Roberts, D.L., Slingo, A.: A climate model study of indirect radiative forcing by anthropogenic sulfate aerosols. Nature. 370, 450–453 (1994)

    Article  Google Scholar 

  • Kelly, D.P., Smith, N.A.: Organic sulfur compounds in the environment: biogeochemistry, microbiology. and ecological aspects. Adv. Microb. Ecol. 11, 345–385 (1990)

    Article  Google Scholar 

  • Kljun, N., Calanca, P., Rotach, M.W., Schmid, H.P.A.: Simple parameterisation for flux footprint predictions. Bound.-Layer Meteorol. 112, 503–523 (2004)

    Article  Google Scholar 

  • Lacerda, L.D., Carvalho, C.E.V., Tanizaki, K.F., Ovalle, A.R.C., Rezende, C.E.: The biogeochemistry and trace metals distribution of mangrove rhizosphere. Biotropica. 25, 252–257 (1993)

    Article  Google Scholar 

  • Lodge, J., James, P.: (Eds.) : methods of air sampling and analysis, 3rd ed. Lewis publishers, Chelsea, M.I. pp. In: 486–492 (1989)

    Google Scholar 

  • Lugo, A.E., Snedaker, S.C.: The ecology of mangrove. Ann. Rev. Ecol. Syst. 5, 39–64 (1974)

    Article  Google Scholar 

  • Mandal, S.K., Majumder, N., Chowdhury, C., Ganguly, D., Dey, M., Jana, T.K.: Adsorption kinetic control of as (III & V) mobilization and sequestration by mangrove sediment. Environ. Earth Sci. 65, 2027–2036 (2011)

    Article  Google Scholar 

  • Millero, F.J.: Chemical Oceanography, Second edn. CRC Press, New York (1996)

  • Murphy, D.M., Anderson, J.R., Quinn, P.K., McInnes, L.M., Brechtel, F.J., Kreidenweis, S.M., Middlebrook, A.M., Pósfai, M., Thomson, D.S., Buseck, P.R.: Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer. Nature. 392, 62–65 (1998). https://doi.org/10.1038/32138

    Article  Google Scholar 

  • Nickerson, N.H., Thibodeau, F.R.: Association between porewater sulfide concentrations and the distribution of mangroves. Biogeochemistry. 1, 183–192 (1985)

    Article  Google Scholar 

  • Pal Arya, S.: Introduction to Micrometeorology, Second edn. Academic Press, New York (2001)

  • Piel, C., Weller, R., Huke, M., Wagenbach, D.: Atmospheric methane sulfonate and non-sea-salt sulfate records at the European project for ice coring in Antarctica (EPICA) deep-drilling site in Dronning Maud land. Antarctica, J. Geophys. Res. Atmos. 111, (2006). https://doi.org/10.1029/2005JD006213

  • Pitts Jr., J.N., Finlayson-Pitots, B.J.: Chemistry of the Upper and Lower Atmosphere. Academic Press, San Diego (2000)

    Google Scholar 

  • Rasch, P. J., Tilmes, S., Turco, R. P., Robock, A., Oman, L., Chen, C. C., Stenchikov, G. L., and Garcia, R. R. (2008). An overview of geoengineering of climate using stratospheric sulphate aerosols. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 366, 4007–4037. doi: https://doi.org/10.1098/rsta.2008.0131, ISSN: 1364-503X.

    Article  Google Scholar 

  • Ray, R., Ganguly, D., Chowdhury, C., Dey, M., Das, S., Dutta, M.K., Mandal, S.K., Majumder, N., De, T.K., Mukhopadhyay, S.K., Jana, T.K.: Carbon sequestration and annual increase of carbon stock in a mangrove forest. Atmos. Environ. 45, 5016–5024 (2011)

    Article  Google Scholar 

  • Ray, R., Majumder, N., Das, S., Chowdhury, C., Jana, T.K.: Biogeochemical cycle of nitrogen in a tropical mangrove ecosystem. east coast of India. Mar. Chem. 167, 33–43 (2014)

    Google Scholar 

  • Saltzman, E.S., Cooper, D.J.: Shipboard measurements of atmospheric dimethylsulfide and hydrogen sulfide in the Caribbean and Gulf of Mexico. J. Atmos. Chem. 7, 191–209 (1988)

    Article  Google Scholar 

  • Schlesinger, W.H. : Biogeochemistry: An Analysis of Global Change 2nd ed. Academic Press, San Diego. 558 p. (1997) (Sixth printing, 2003; Spanish edition, 2000)

  • Schwartz, S.E.: The Whitehouse effect–shortwave radiative forcing of climate by anthropogenic aerosols: an overview. J. Aerosol Sci. 27, 359–382 (1996)

    Article  Google Scholar 

  • Steudler, P.A., Peterson, B.J.: Contribution of gaseous Sulphur from salt marshes to the global Sulphur cycle. Nature. 311, 455–457 (1984)

    Article  Google Scholar 

  • Tan, C.S., Black, T.A.: Factors affecting the canopy resistance of a Douglas-fir forest. BLM. 10, 475–488 (1976)

    Google Scholar 

  • Twilley, R. R. and Day J. W., Jr. : The productivity and nutrient cycling of mangrove ecosystems, p. 127-152. In : A. Yáñez-Arancibia Y a. L. Lara-Domínguez (Eds.). Ecosistemas de ManglarenAmérica Tropical. Instituto de Ecología a.C. México, UICN/ORMA, Costa Rica, NOAA/NMFS Silver Spring MD USA. 380 P, (1999)

  • Wagner-Riddle, C., Thurtell, G.W., King, K.M., Kidd, G.E., Beauchamp, E.G.: Nitrous oxide and carbon dioxide fluxes from a bare soil using a micrometeorological approach. J. Environ. Qual. 25, 898–907 (1996)

    Article  Google Scholar 

  • Ward, A.D., Trimble, S.W., Wolman, M.G.: Environmental Hydrology, Edition 2, Chapter 4, p. 95 (2004)

    Google Scholar 

  • Wesely, M.L., Hicks, B.B.: Some factors that affect the deposition rates of sulfur dioxide and similar gases on vegetation. Journal of Air Pollution Control Association. 27, 1110–1116 (1977)

    Article  Google Scholar 

  • Xinhua, L., Zhenlin, Z., Liping, Y., Zhigao S.: Emissions of Biogenic Sulfur Gases (H2S, COS) from Phragmites australis Coastal Marsh in the Yellow River Estuary of China. Chinese Geographical Science 26(6), 770–778 (2016)

    Article  Google Scholar 

  • Zhuang, H., Chan, C.K., Fang, M., Waxler, A.S.: Formation of nitrate and non-seas salt sulfate on coarse particles. Atmos. Environ. 33, 422 (1999)

    Google Scholar 

Download references

Acknowledgments

Financial assistance from the Department of Science and Technology, Government of India, for the study under the FIST program is gratefully acknowledged. Thanks are also due to the Sundarban Biosphere Reserve and Divisional Forest Office, Government of West Bengal, for providing permissions to carry out the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ganguly.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganguly, D., Ray, R., Majumdar, N. et al. Biogenic hydrogen sulphide emissions and non-sea sulfate aerosols over the Indian Sundarban mangrove forest. J Atmos Chem 75, 319–333 (2018). https://doi.org/10.1007/s10874-018-9382-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-018-9382-3

Keywords

Navigation