Skip to main content

Advertisement

Log in

Characterisation of water-soluble organic aerosols at a site on the southwest coast of India

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Aerosol samples collected over a tropical location, Thumba, southernmost West Coast of India were analyzed for the abundance of homologous dicarboxylic acids (C2 to C12), oxocarboxylic acids (ωC2 to ωC9, pyruvic acid), α-dicarbonyls (glyoxal and methylglyoxal), organic and elemental carbon. Among the measured organics, oxalic acid was found to be the most abundant species followed by succinic and/or malonic acids. As oxoacid and α-carbonyl groups, glyoxylic acid and glyoxal, respectively, were observed to be dominant. On average, dicarboxylic acids accounted almost 2.1 ± 0.7 % of the aerosol total organic carbon. Among the aerosols over Thumba, two types of formation pathways were noticed for oxalic acid. During the post-monsoon and winter periods, the photo-oxidation of biogenic and anthropogenic volatile organic compounds lead to the formation of oxalic acid through a chain reaction involving glyoxal, methylglyoxal, pyruvic and glyoxylic acids. In contrast, during the pre-monsoon, the oxidative degradation of the biogenic unsaturated fatty acids give rise to succinic acid, which can be decomposed to malonic acid and then to oxalic acid. The observed seasonal variations in acid concentrations are consistent with photochemical production and the subsequent accumulation under favourable meteorological conditions prevailing over the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acker K., Mertes S., Moller D., Wieprecht W., Auel R., Kalasz D.: Case study of cloud physical and chemical processes in low clouds at Mt. Brocken. Atmos. Res. 64, 41–51 (2002)

    Article  Google Scholar 

  • Agarwal S., Aggarwal S.G., Okuzawa K., Kawamura K.: Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols. Atmos. Chem. Phys. 10, 5839–5858 (2010). doi:10.5194/acp-10-5839-2010

    Article  Google Scholar 

  • Aggarwal S.G., Kawamura K.: Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: implications for photochemical aging during long-range atmospheric transport. J. Geophys. Res. 113, D14301 (2008). doi:10.1029/2007JD009365

    Article  Google Scholar 

  • Allen A.G., Miguel A.H.: Biomass burning in the Amazon-characterization of the ionic component of aerosols generated from flaming and smoldering rain-forest and savanna. Environ. Sci. Technol. 29(2), 486–493 (1995)

    Article  Google Scholar 

  • Andreae M., Crutzen P.J.: Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science. 276, 1052–1058 (1997)

    Article  Google Scholar 

  • Artaxo P., Storms H., Bruynseels F., Grieken R.V., Maenhaut W.: Composition and sources of aerosols from the Amazon Basin. J. Geophys. Res. 93, 1605–1615 (1988)

    Article  Google Scholar 

  • Babu S.S., Moorthy K.K.: Aerosol black carbon over a tropical coastal station in India. Geophys. Res. Lett. 29(23), 2098 (2002). doi:10.1029/2002GL015662

    Article  Google Scholar 

  • Carlson D.J.: Surface microlayer phenolic enrichments indicate sea surface slicks. Nature. 296, 426–429 (1982). doi:10.1038/296426a0

    Article  Google Scholar 

  • Chandra Mouli P., Venkata Mohan S., Jayarama Reddy S.: Chemical composition of atmospheric aerosols (PM10) at a semi-arid urban site: influence of terrestrial sources. Environ. Monit. Assess. 117, 291–305 (2006). doi:10.1007/s10661-006-0988-6

    Article  Google Scholar 

  • Chinnam N., Dey S., Tripathi S.N., Sharma M.: Dust events in Kanpur, northern India: Chemical evidence for source and implications to radiative forcing. Geophys. Res. Lett. 33, L08803 (2006). doi:10.1029/2005GL025278

    Article  Google Scholar 

  • Chowdhury Z., Zheng M., Schauer J.J., Sheesley R.J., Salmon L., Cass G.R., Russell A.: Speciation of ambient fine organic carbon particles and source apportionment of PM2.5 in Indian cities. J. Geophys. Res. 112, D15303 (2007). doi:10.1029/2007JD008386

    Article  Google Scholar 

  • Das, P. K., 1986, Monsoons, Fifth IMO lecture, WMO, No-613, World Meteorological Organisation. 1986 pp.

  • Decesari S., Fuzzi S., Facchini M.C., Mircea M., Emblico L., Cavalli F., Maenhaut W., Chi X., Schkolnik G., Falkovich A., Rudich Y., Claeys M., Pashynska V., Vas G., Kourtchev I., Vermeylen R., Hoffer A., Andreae M.O., Tagliavini E., Moretti F., Artaxo P.: Characterization of the organic composition of aerosols from Rondˆnia, Brazil, during the LBASMOCC 2002 experiment and its representation through model compounds. Atmos. Chem. Phys. 6, 375–402 (2006). doi:10.5194/acp-6-375-2006

    Article  Google Scholar 

  • Ervens B., Feingold G., Frost G.F., Kreidenweis S.M.: A modeling study of aqueous production of dicarboxylic acids: 1. Chemical pathways and speciated organic mass production. J. Geophys. Res. 109, D15205 (2004). doi:10.1029/2003JD004387

    Article  Google Scholar 

  • Falkovich A.H., Graber E.R., Schkolnik G., Rudich Y., Maenhaut W., Artaxo P.: Low molecular weight organic acids in aerosol particles from Rondônia, Brazil, during the biomass-burning, transition and wet periods. Atmos. Chem. Phys. 5, 781–797 (2005)

    Article  Google Scholar 

  • Fletcher C.A., Johnson G.R., Ristovski Z.D., Harvey M.: Hygroscopic and volatile properties of marine aerosol observed at Cape Grim during P2P campaign. Environ. Chem. 4, 162–171 (2007)

    Article  Google Scholar 

  • Gadi R., Sarkar A.K., Gera B.S., Mitra A.P., Parashar D.C.: Chemical composition of atmospheric aerosols at New Delhi. Indian. J. Radio Space Phys. 31, 93–97 (2002)

    Google Scholar 

  • Gao S., Hegg D.A., Hobbs P.V., Kirchstetter T.W., Magi B.I., Sadilek M.: Water-soluble organic components in aerosols associated with savanna fires in southern Africa: identification, evolution, and distribution. J. Geophys. Res. 108(D13), 8491 (2003). doi:10.1029/2002JD002324

    Google Scholar 

  • George S.K., Nair P.R., Parameswaran K., Jacob S., Abraham A.: Seasonal trends in chemical composition of aerosols at a tropical coastal site of India. J. Geophys. Res. 113, D16209 (2008). doi:10.1029/2007JD009507

    Article  Google Scholar 

  • George, S.K., Nair, P.R., Parameswaran, K., Jacob, S., 2011. Wintertime chemical composition of aerosols at a rural location in the Indo-Gangetic Plains. J. Atmos. Sol.Terr. Phys., 73(13), 1798–1809, doi:10.1016/j.jastp.2011.04.005.

    Article  Google Scholar 

  • Graedel T.T., Hawkins D.T., Claxton L.D.: Atmospheric Chemical Compounds, p. 732. Academic, San Diego (1986)

    Google Scholar 

  • Graham B., Mayol-Bracero O.L., Guyon P., Roberts G.C., Decesari S., Facchini M.C., Artaxo P., Maenhaut W., Koll P., Andreae M.O.: Water-soluble organic compounds in biomass burning aerosols over Amazonia: 1. Characterization by NMR and GC-MS. J. Geophys. Res. 107(D20), 8047 (2002). doi:10.1029/2001JD000336

    Article  Google Scholar 

  • Grosjean D., Fung K.: Hydrocarbons and carbonyls in Los Angeles air. J. Air Pollut. Control Assoc. 34, 537–543 (1984)

    Article  Google Scholar 

  • Grosjean D., Cauwenberghe K.V., Schmid J.P., Kelley P.E., Pitts Jr. J.N.: Identification of C3 - C10 aliphatic dicarboxylic acids in airborne particulate matter. Environ. Sci. Technol. 12, 313–317 (1978)

    Article  Google Scholar 

  • Guenther A., Karl T., Harley P., Wiedinmyer C., Palmer P., Geron C.: Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos. Chem. Phys. 6, 3181–3210 (2006)

    Article  Google Scholar 

  • Hatakeyama S., Tanonaka T., Weng J., Bandow H., Takagi H., Akimoto H.: Ozone-cyclohexene reaction in air: quantitative analyses of particulate products and the reaction mechanism. Environ. Sci. Technol. 19, 935–942 (1985)

    Article  Google Scholar 

  • Hatakeyama S., Ohno M., Weng J., Takagi H., Akimoto H.: Mechanism for the formation of gaseous and particulate products from ozone-cycloalkene reactions in air. Environ. Sci. Technol. 21, 52–57 (1987)

    Article  Google Scholar 

  • Hegde P., Kawamura K.: Seasonal variations of water-soluble organic carbon, dicarboxylicacids, ketoacids, and α-dicarbonyls in the central Himalayan aerosols. Atmos. Chem. Phys. 12, 6645–6665 (2012). doi:10.5194/acp-12-6645-2012

    Article  Google Scholar 

  • Hegde P., Sudheer A.K., Sarin M.M., Manjunatha B.R.: Chemical characteristics of atmospheric aerosols over southwest coast of India. Atmos. Environ. 41, 7751–7766 (2007)

    Article  Google Scholar 

  • Heidam N.Z.: Atmospheric aerosol factor models, mass and missing data. Atmos. Environ. 16, 1923–1931 (1982)

    Article  Google Scholar 

  • Ho K.F., Lee S.C., Cao J.J., Kawamura K., Watanabe T., Cheng Y., Chow J.C.: Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong. Atmos. Environ. 40, 3030–3040 (2006). doi:10.1016/j.atmosenv.2005.11.069

    Article  Google Scholar 

  • Ho K.F., Cao J.J., Lee S.C., Kawamura K., Zhang R.J., Chow J.C., Watson J.G.: Dicarboxylic acids, ketocarboxylic acids, and dicarbonyls in the urban atmosphere of China. J. Geophys. Res. 112, D22S27 (2007). doi:10.1029/2006JD008011

    Article  Google Scholar 

  • Ho K.F., Lee S.C., Ho S.S.H., Kawamura K., Tachibana E., Cheng Y., Zhu T.: Dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids and benzoic acid in urban aerosols collected during 2006 Campaign of Air Quality Research in Beijing (CAREBeijing-2006). J. Geophys. Res. 115, D19312 (2010). doi:10.1029/2009JD013304

    Article  Google Scholar 

  • Hobbs P.V., Harrison H., Robinson E.: Atmospheric effects of pollutants. Science. 183, 909–915 (1974)

    Article  Google Scholar 

  • Hori M., Sachio O., Naoto M., Sadamu Y.: Activation capability of water soluble organic substances as CCN. Aerosol Sci. 34, 419–448 (2003)

    Article  Google Scholar 

  • Hsieh L.-Y., Chen C.-L., Wan M.-W., Tsai C.-H., Tsai Y.I.: Speciation and temporal characterization of dicarboxylic acids in PM2.5 during a PM episode and a period of non-episodic pollution. Atmos. Environ. 42, 6836–6850 (2008). doi:10.1016/j.atmosenv.2008.05.021

    Article  Google Scholar 

  • Huang X.-F., Hu M., He L.-Y., Tang X.-Y.: Chemical characterization of water-soluble organic acids inPM2.5 in Beijing, China. Atmos. Environ. 39, 2819–2827 (2005). doi:10.1016/j.atmosenv.2004.08.038

    Article  Google Scholar 

  • Jacobson M.C., Hansson H.-C., Noone K.J., Charlson R.J.: Organic atmospheric aerosols: review and state of the science. Rev. Geophys. 38, 267–294 (2000)

    Article  Google Scholar 

  • Jung J., Tsatsral B., Kim Y.J., Kawamura K.: Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the cold winter of 2007 to 2008: dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls. J. Geophys. Res. 115, D22203 (2010). doi:10.1029/2010JD014339

    Article  Google Scholar 

  • Kawamura K.: Identification of C2-C10 ω-oxocarboxylic acids, pyruvic acid C2-C3 α-dicarbonyls in wet precipitation and aerosol samples by capillary GC and GC-MS. Anal. Chem. 65, 3505–3511 (1993)

    Article  Google Scholar 

  • Kawamura K., Gagosian R.B.: Implications of w-oxocarboxylic acids in the remote marine atmosphere for photo-oxidation of unsaturated fatty acids. Nature. 325, 330–332 (1987). doi:10.1038/325330a0

    Article  Google Scholar 

  • Kawamura K., Ikushima K.: Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environ. Sci. Technol. 27, 2227–2235 (1993)

    Article  Google Scholar 

  • Kawamura K., Kaplan I.R.: Motor exhaust emission as a primary source of dicarboxylic acids in Los Angeles ambient air. Environ. Sci. Technol. 21, 105–110 (1987)

    Article  Google Scholar 

  • Kawamura K., Pavuluri C.M.: New directions: need for better understanding of plastic waste burning as inferred from high abundance of terephthalic acid in South Asian aerosols. Atoms. Environ. 44, 5320–5321 (2010)

    Article  Google Scholar 

  • Kawamura K., Sakaguchi F.: Molecular distribution of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. J. Geophys. Res. 104(D3), 3501–3509 (1999). doi:10.1029/1998JD100041

    Article  Google Scholar 

  • Kawamura K., Usukura K.: Distributions of low molecular weight dicarboxylic acids in the North Pacific aerosol samples. J. Oceanogr. 49, 271–283 (1993). doi:10.1007/BF02269565

    Article  Google Scholar 

  • Kawamura K., Yasui O.: Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere. Atmos. Environ. 39, 1945–1960 (2005)

    Article  Google Scholar 

  • Kawamura K., Kasukabe H., Barrie L.A.: Source and reaction pathways of dicarboxylic acids, ketoacids, and dicarbonyls in Arctic aerosols at polar sunrise. Atmos. Environ. 30, 1709–1722 (1996a)

    Article  Google Scholar 

  • Kawamura K., Sempéré R., Imai Y., Fujii Y., Hayashi M.: Water soluble dicarboxylic acids and related compounds in Antarctic aerosols. J. Geophys. Res. 101, 18,721–18,728 (1996b)

    Article  Google Scholar 

  • Kawamura K., Steinberg S., Kaplan I.R.: Concentrations of monocarboxylic and dicarboxylic acids and aldehydes in Southern California wet precipitations: comparison of urban and non-urban samples and compositional changes during scavenging. Atmos. Environ. 30, 1035–1052 (1996c)

    Article  Google Scholar 

  • Kawamura, K., M. Kobayashi, N. Tsubonuma, M. Mochida, T. Watanabe, and M. Lee, 2004. Organic and inorganic compositions of marine aerosols from East Asia: seasonal variations of water-soluble dicarboxylic acids, major ions, total carbon and nitrogen, and stable C and N isotopic composition, In Geochemical Investigation in Earth and Space Science: a Tribute to Isaac R. Kaplan, (eds) R. J. Hill et al.. Geochem. Soc., Publ. Ser. no. 9, pp. 243–265, Elsevier, New York.

  • Kawamura K., Tachibana E., Okuzawa K., Aggarwal S.G., Kanaya Y., Wang Z.F.: High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the mountaintop aerosols over the North China plain during wheat burning season. Atmos. Chem. Phys. 13, 8285–8302 (2013). doi:10.5194/acp-13-8285-2013

    Article  Google Scholar 

  • Kerminen V.-M., Ojanen C., Pakkanen T., Hillamo R., Aurela M., Merilainen J.: Low-molecular-weight dicarboxylic acids in an urban and rural atmosphere. J. Aerosol Sci. 31, 349–362 (2000)

    Article  Google Scholar 

  • Kulshrestha U.C., Kumar N., Saxena A., Kumari K.M., Srivastava S.S.: Identification of the nature and source of atmospheric aerosols near the Taj Mahal (India). Environ. Monit. Assess. 34, 1–11 (1995)

    Article  Google Scholar 

  • Kundu S., Kawamura K., Andreae T.W., Hoffer A., Andreae M.O.: Diurnal variation in the water-soluble inorganic ions, organic carbon and isotopic compositions of total carbon and nitrogen in biomass burning aerosols from the LBA-SMOCC campaign in Rondônia. Brazil. J. Aerosol Sci. 41, 118–133 (2010a)

    Article  Google Scholar 

  • Kundu S., Kawamura K., Andreae T.W., Hoffer A., Andreae M.O.: Molecular distributions of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers. Atmos. Chem. Phys. 10, 2209–2225 (2010b)

    Article  Google Scholar 

  • Legrand M., Preunkert S., Oliveira T., Pio C.A., Hammer S., Gelencér A., Kasper-Giebl A., Laj P.: Origin of C2-C5 dicarboxylic acids in the European atmosphere inferred from year-round aerosol study conducted at a west–east transect. J. Geophys. Res. 112, D23S07 (2007). doi:10.1029/2006JD008019

    Article  Google Scholar 

  • Lim H.-O., Carlton A.G., Turpin B.J.: Isoprene forms secondary organic aerosol through cloud processing: model simulations. Environ. Sci. Technol. 39, 4441–4446 (2005). doi:10.1021/es048039h

    Article  Google Scholar 

  • Matsumoto K., Tanaka H., Nagao I., Ishizaka Y.: Contribution of particulate sulfate and organic carbon to cloud condensation nuclei in the marine atmosphere. Geophys. Res. Lett. 24, 655–658 (1997)

    Article  Google Scholar 

  • Mayol-Bracero O.L., Guyon P., Graham B., Roberts G., Andreae M.O., Decesari S., Facchini M.C., Fuzzi S., Artaxo P.: Water-soluble organic compounds in biomass burning aerosols over Amazonia, 2, apportionment of the chemical composition and importance of the polyacidic fraction. J. Geophys. Res. 107(D20), 8091 (2002). doi:10.1029/2001JD000522

    Article  Google Scholar 

  • Miyazaki Y., Aggarwal S.G., Singh K., Gupta P.K., Kawamura K.: Dicarboxylic acids and water-soluble organic carbon in aerosols in New Delhi, India, in winter: characteristics and formation processes. J. Geophys. Res. 114, D19206 (2009). doi:10.1029/2009JD011790

    Article  Google Scholar 

  • Mkoma S.L., Kawamura K., Fu P.: Carbonaceous components, levoglucosan and inorganic ions in tropical aerosols from a rural site in Tanzania, East Africa: Implication for biomass burning to organic aerosols. Atmos. Chem. Phys. 13, 10325–10338 (2013)

    Article  Google Scholar 

  • Mochida M., Kawabata A., Kawamura K., Hatsushika H., Yamazaki K.: Seasonal variation and origins of dicarboxylic acids in the marine atmosphere over the western north Pacific. J. Geophys. Res. 108(D6), 4193 (2003). doi:10.1029/2002JD002355

    Article  Google Scholar 

  • Moorthy K.K., Babu S.S.: Aerosol black carbon over bay of Bengal observed from an island location, port Blair: temporal features and long-range transport. J. Geophys. Res. 111, D17205 (2006). doi:10.1029/2005JD006855

    Article  Google Scholar 

  • Moorthy K.K., Nair P.R., Murthy B.V.K.: Size distribution of coastal aerosols: effects of local sources and sinks. J. Appl. Meteorol. 30(6), 844–852 (1991)

    Article  Google Scholar 

  • Nair P.R., George S.K., Sunilkumar S.V., Parameswaran K., Jacob S., Abraham A.: Chemical composition of aerosols over peninsular India during winter. Atmos. Environ. 40, 6477–6493 (2006)

    Article  Google Scholar 

  • Nair P.R., George S.K., Aryasree S., Jacob S.: Chemical composition of aerosols over Bay of Bengal during premonsoon: Dominance of anthropogenic sources. J. Atmos. Sol. Terr. Phys. 109, 54–65 (2014). doi:10.1016/j.jastp.2014.01.004

    Article  Google Scholar 

  • Narayanan V.: An observational study of the sea breeze at an equatorial coastal station. Indian J. Meteorol. Geophys. 18, 497–504 (1967)

    Google Scholar 

  • Narukawa M., Kawamura K., Takeuchi N., Nakajima T.: Distribution of dicarboxylic acids and carbon isotopic compositions in aerosols from 1997 Indonesian forest fires. Geophys. Res. Lett. 26(20), 3101–3104 (1999). doi:10.1029/1999GL010810

    Article  Google Scholar 

  • Negi B.S., Sadasivan S., Mishra U.C.: Aerosol composition and sources in urban areas in India. Atmos. Environ. 21, 1259–1266 (1987). doi:10.1016/0004-6981(67)90072-8

    Article  Google Scholar 

  • Parameswaran K., Sunilkumar S.V., Rajeev K., Nair P.R., Moorthy K.K.: Boundary layer aerosols at Trivandrum tropical coast. Adv. Space Res. 34, 838–844 (2004)

    Article  Google Scholar 

  • Pavuluri C.M., Kawamura K., Swaminathan T.: Water-soluble organic carbon, dicarboxylic acids, ketoacids, and a-dicarbonyls in the tropical Indian aerosols. J. Geophys. Res. 115, D11302 (2010). doi:10.1029/2009JD012661

    Article  Google Scholar 

  • Pillai P.S., Moorthy K.K.: Aerosol mass-size distributions at a tropical coastal environment: response to mesoscale and synoptic processes. Atmos. Environ. 35, 4099–4112 (2001)

    Article  Google Scholar 

  • Prakash J.W.J., Ramachandran R., Nair K.N., Gupta S.K., Kunhikrishnan P.K.: On the structure of sea breeze front effects observed near the coast line of Thumba, India. Bound.-Lay. Meteorol. 59, 111–124 (1992)

    Article  Google Scholar 

  • Putaud J.-P., Van Dingenen R., Dell’Acqua A., Raes F., Matta E., Decesari S., Facchini M.C., Fuzzi S.: Size-segregated aerosol mass closure and chemical composition in Monte Ci- mone (I) during MINATROC. Atmos. Chem. Phys. 4, 889–902 SRef-ID: 1680-7324/acp/2004-4-889 (2004)

    Article  Google Scholar 

  • Rastogi N., Sarin M.M.: Chemistry of aerosols over a semiarid region: evidence for acid neutralization by mineral dust. Geophys. Res. Lett. 33, L23815 (2006). doi:10.1029/2006GL027708

    Article  Google Scholar 

  • Roberts G.C., Andreae M.O., Zhou J., Artaxo P.: Cloud condensation nuclei in the Amazon Basin: “Marine” conditions over a continent? Geophys. Res. Lett.. 28(14), 2807–2810 (2001)

    Article  Google Scholar 

  • Rogge W.F., Hildemann L.M., Mazurek M.A., Cass G.R., Simoneit B.R.T.: Sources of fine organic aerosol. part I: Charbroilers and meat cooking operations. Environ. Sci. Technol. 25(D24), 1112–1125 (1991)

    Article  Google Scholar 

  • Safai P.D., Kewat S., Praveen P.S., Rao P.S.P., Momin G.A., Ali K., Devara P.C.S.: Seasonal variation of black carbon aerosols over a tropical urban city of Pune, India. Atmos. Environ. 41, 2699–2709 (2007)

    Article  Google Scholar 

  • Satsumabayashi H., Kurita H., Yokouchi Y., Ueda H.: Photochemical formation of particulate dicarboxylic acids under long-range transport in central Japan. Atmos. Environ. 24, 1443–1450 (1990)

    Article  Google Scholar 

  • Saxena P., Hildemann L.M.: Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds. J. Atmos. Chem. 24, 57–109 (1996)

    Article  Google Scholar 

  • Sciare J., Favez O., Sarda-Este’ve R., Oikonomou K., Cachier H., Kazan V.: Long-term observations of carbonaceous aerosols in the Austral Ocean atmosphere: evidence of a biogenic marine organic source. J. Geophys. Res. 114, D15302 (2009). doi:10.1029/2009JD011998

    Article  Google Scholar 

  • Sempéré R., Kawamura K.: Comparative distributions of dicarboxylic-acids and related polar compounds in snow rain and aerosols from urban atmosphere. Atmos. Environ. 28, 449–459 (1994)

    Article  Google Scholar 

  • Sempéré R., Kawamura K.: Trans-hemispheric contribution of C2-C10 α, ω-dicarboxylic acids, and related polar compounds to water-soluble organic carbon in the western Pacific aerosols in relation to photochemical oxidation reactions. Glob. Biogeochem. Cycles. 17, 1069 (2003). doi:10.1029/2002GB001980

    Article  Google Scholar 

  • Seto S., Oohara M., Ikeda Y.: Analysis of precipitation chemistry at a rural site in Hiroshima Prefecture, Japan. Atmos. Environ. 34, 621–628 (2000)

    Article  Google Scholar 

  • Sharma D.N., Sawant A.A., Uma R., Cocker III D.R.: Preliminary chemical characterization of particle-phase organic compounds in New Delhi, India. Atmos. Environ. 37, 4317–4323 (2003)

    Article  Google Scholar 

  • Sharma M., Kishore S., Tripathi S.N., Behera S.N.: Role of atmospheric ammonia in the formation of inorganic secondary particulate matter: a study at Kanpur, India. J. Atmos. Chem. 58, 1 (2007)

    Article  Google Scholar 

  • Simeonov V., Kalina M., Tsakovski S., Puxbaum H.: Multivariate statistical study of simultaneously monitored cloud water, aerosol and rainwater data from different elevation levels in an alpine valley (Achenkirch, Tyrol, Austria). Talanta. 61, 519–528 (2003)

    Article  Google Scholar 

  • Simoneit B.R.T., Medeiros P.M., Didyk B.M.: Combustion products of plastics as indicators for refuse burning in the atmosphere. Environ. Sci. Technol. 39, 6961–6970 (2005). doi:10.1021/es050767x

    Article  Google Scholar 

  • Sorooshian A. et al.: Oxalic acid in clear and cloudy atmospheres: Analysis of data from International Consortium for Atmospheric Research on Transport and Transformation 2004. J. Geophys. Res. 111, D23S45 (2006). doi:10.1029/2005JD006880

    Article  Google Scholar 

  • Stephanou E.G., Stratigakis N.: Oxocarboxylic and alpha, omega-dicarboxylic acids: photooxidation products of biogenic unsaturated fatty acids present in urban aerosols. Environ. Sci. Technol. 27, 1403–1407 (1993)

    Article  Google Scholar 

  • Talbot R.W., Beecher K.M., Harriss R.C., Cofer III W.R.: Atmospheric geochemistry of formic and acetic acids at a mid-latitude temperature. J. Geophys. Res. 93, 1638–1652 (1988)

    Article  Google Scholar 

  • Volkamer R. et al.: Primary and secondary glyoxal formation from aromatics: experimental evidence for the bicycloalkyl-radical pathway from benzene, toluene, and p-xylene. J. Phys. Chem. A. 105, 7865–7874 (2001)

    Article  Google Scholar 

  • Volkamer R., San Martini F., Molina L.T., Salcedo D., Jimenez J.L., Molina M.J.: A missing sink for gas-phase glyoxal in Mexico city: formation of secondary organic aerosol. Geophys. Res. Lett. 34, L19807 (2007). doi:10.1029/2007GL030752

    Article  Google Scholar 

  • Wang G., Liu N.C., Wang L.: Identification of dicarboxylic acids and aldehydes of PM10 and PM2.5 aerosols in Nanjing, China. Atmos. Environ. 36, 1941–1950 (2002)

    Article  Google Scholar 

  • Wang H., Kawamura K., Yamazaki K.: Water soluble dicarboxylic acids, ketoacids and dicarbonyls in the atmospheric aerosols over the Southern Ocean and western Pacific Ocean. J. Atmos. Chem. 53, 43–61 (2006a)

    Article  Google Scholar 

  • Wang H., Kawamura K., Ho K.F., Lee S.C.: Low molecular weight dicarboxylic acids, ketoacids and dicarbonyls in the fine particles from a roadway tunnel: significant secondary production from the precursors in vehicular emissions. Environ. Sci. Technol. 40, 6255–6260 (2006b)

    Article  Google Scholar 

  • Warneck P.: Chemistry of the Natural Atmosphere, pp. 270–275. Academic, San Diego (2000)

    Google Scholar 

  • Warneck P.: In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere. Atmos. Environ. 37, 2423–2427 (2003)

    Article  Google Scholar 

  • Yao X., Fang M., Chan C.K.: Size distributions and formation of dicarboxylic acids in atmospheric particles. Atmos. Environ. 36, 2099–2107 (2002)

    Article  Google Scholar 

  • Yao X., Fang M., Chan C.K., Ho K.F., Lee S.C.: Characterization of dicarboxylic acids in PM2.5 in Hong Kong. Atmos. Environ. 38, 963–970 (2004). doi:10.1016/j.atmosenv.2003.10.048

    Article  Google Scholar 

  • Yokouchi Y., Ambe Y.: Characterization of polar organics in airborne particulate matter. Atmos. Environ. 20, 1727–1734 (1986)

    Article  Google Scholar 

  • Yu S.C.: Review: role of organic acids formic, acetic, pyruvic and oxalic in the formation of cloud condensation nuclei CCN: a review. Atmos. Res. 53, 185–217 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

This study was partly supported by Japan Society for the Promotion of Science (JSPS) through grant-in-aid Nos. 19204055 and 24221001. We also appreciate the financial support of a JSPS fellowship to P.H., during which the author was on sabbatical from Indian Space Research Organisation (ISRO), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Hegde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegde, P., Kawamura, K., Girach, I.A. et al. Characterisation of water-soluble organic aerosols at a site on the southwest coast of India. J Atmos Chem 73, 181–205 (2016). https://doi.org/10.1007/s10874-015-9322-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-015-9322-4

Keywords

Navigation