Skip to main content

Advertisement

Log in

Data assimilation of sea ice concentration into a global ocean–sea ice model with corrections for atmospheric forcing and ocean temperature fields

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

A multivariate data assimilation experiment was conducted in order to improve the global representation of both the ocean and sea ice fields through the inclusion of sea ice concentration (SIC) data. Our method corrects the surface forcing and ocean temperature fields (as well as the SIC field) through the use of three-dimensional variational analysis. The adjustments to surface air temperatures resulting from the SIC assimilation are estimated on the basis of two constraints. First, we assume that the interfacial temperature difference between the surface air and the average value at the “top” of the grid (which represents a weighted mean according to the relative coverage of sea ice to open water within the grid) is maintained at the pre-assimilation value. Similarly, the vertical temperature structure for each of the five sea ice categories considered here remains unchanged throughout the assimilation. In making the necessary adjustments to upper-layer ocean temperatures, we again adopt a weighting procedure based on the condition that ice-free water temperature must remain the same. Thus, areas containing sea ice are allotted the freezing-point temperature such that the weighted mean value across the grid can be derived. The reproduction of the SIC field in both hemispheres is improved by incorporating the resulting corrections to the surface forcing and ocean temperature values, indicating that these boundary conditions produce results that are more consistent with the corrected SIC field in the sea ice model. The enhanced ocean–sea ice fields provide initial conditions that are better suited for coupled atmosphere–ocean–sea ice prediction experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. European Centre for Medium-Range Weather Forecast (ECMWF) 40-year Reanalysis (Uppala et al. 2005).

  2. Japanese 25-year ReAnalysis (JRA-25; Onogi et al. 2007) and its operational follow-on, the JMA Climate Data Assimilation System (JCDAS).

  3. Optimally Interpolated Sea Surface Temperature dataset (Reynolds et al. 2002).

  4. Objective analysis of SST for the twentieth century (Ishii et al. 2005).

  5. Global Daily Sea-Surface Temperature analysis (Kurihara et al. 2006).

  6. National Centers for Environmental Prediction (NCEP) Reanalysis II (Kanamitsu et al. 2002).

  7. The NCEP-National Center for Atmospheric Research reanalysis (Kalnay et al. 1996).

References

  • Aargaard K, Carmack EC (1989) The role of sea ice and other freshwater in the Arctic circulation. J Geophys Res 94:14485–14498

    Article  Google Scholar 

  • Antonov JI, Seidov D, Boyer TP, Locarnini RA, Mishonov AV, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, Volume 2: Salinity. In: Levitus S (ed) NOAA Atlas NESDIS 69. US Government Printing Office, Washington DC, p 184

    Google Scholar 

  • Awaji T, Masuda S, Ishikawa Y, Sugiura N, Toyoda T, Nakamura T (2003) State estimation of the North Pacific Ocean by four-dimensional variational data assimilation experiment. J Oceanogr 59:931–943

    Article  Google Scholar 

  • Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. QJR Meteorol Soc 139:1132–1161. doi:10.1002/qj.2063

    Article  Google Scholar 

  • Bloom SC, Takacs L, daSilva AM, Ledvina D (1996) Data assimilation using incremental analysis updates. Mon Weather Rev 124:1256–1271

    Article  Google Scholar 

  • Boyer TP, Antonov JI, Baranova OK, Garcia HE, Johnson DR, Locarnini RA, Mishonov AV, O’Brien TD, Seidov D, Smolyar IV, Zweng MM (2009) World Ocean Database 2009. In: Levitus S (ed) NOAA Atlas NESDIS 66. US Government Printing Office, Washington, DC, p 216

    Google Scholar 

  • Brodeau L, Barnier B, Treguier AM, Penduff T, Gulev S (2010) An ERA40-based atmospheric forcing for global ocean circulation. Ocean Model 31:88–104. doi:10.1016/j.ocemod.2009.10.005

    Article  Google Scholar 

  • Bromwich DH, Fogt RL, Hodges KI, Walsh JE (2007) A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions. J Geophys Res 112:D10111. doi:10.1029/2006JD007859

    Article  Google Scholar 

  • Caya A, Buehner M, Carrieres T (2010) Analysis and forecasting of sea ice conditions with three-dimensional variational data assimilation and a coupled ice-ocean model. J Atmos Ocean Technol 27:353–369. doi:10.1175/2009JTECHO701.1

    Article  Google Scholar 

  • CLS (2012) Ssalto/Duacs user handbook: (M)SLA and (M)ADT near-real time and delayed-time products. CLS-DOS-NT-06-034, Issue 3.2, Collecte Localisation Satellites (CLS), Toulouse, p 58

  • Comiso JC, Cavalieri DJ, Parkinson CL, Gloersen P (1997) Passive microwave algorithms for sea ice concentration: a comparison of two techniques. Remote Sens Environ 60:357–384

    Article  Google Scholar 

  • Comiso JC (2007) Enhanced sea ice concentrations from passive microwave data. NASA Goddard Space Flight Center, Greenbelt, Maryland, p 20

  • Curry JA, Schramm JL, Ebert EE (1995) On the ice albedo climate feedback mechanism. J Clim 8:240–247

    Article  Google Scholar 

  • Curry JA, Rossow WB, Randall D, Schramm JL (1996) Overview of Arctic cloud and radiative characteristics. J Clim 9:1731–1764

    Article  Google Scholar 

  • Curry JA, Schramm JL, Alam A, Reeder R, Arbetter TE (2002) Evaluation of data sets used to force sea ice models in the Arctic Ocean. J Geophys Res 107:C108027. doi:10.1029/2000JC000466

    Google Scholar 

  • Danabasoglu G et al (2014) North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part I: mean state. Ocean Model 73:76–107

    Article  Google Scholar 

  • Duffy PB, Eby M, Weaver AJ (1999) Effects of sinking of salt rejected during formation of sea ice on results of an ocean-atmosphere-sea ice climate model. Geopys Res Lett 26(12):1739–1742

    Article  Google Scholar 

  • Dulière V, Fichefet T (2007) On the assimilation of ice velocity and concentration data into large-scale sea ice models. Ocean Sci Dis 4:265–301

    Article  Google Scholar 

  • Eastwood S, Larsen KR, Lavergne T, Nielsen E, Tonboe R (2011) Global sea ice concentration reprocessing: product user manual. EUMETSAT OSI SAF report SAF/OSI/CDOP/met.no/TEC/MA/138, EUMETSAT Ocean & Sea Ice Satellite Application Facilities, Darmstadt, p 38

  • Edwards MO (1989) Global gridded elevation and bathymetry on 5-minute geographic grid (ETOPO5). NOAA, National Geophysical Data Center, Boulder, Colorado

    Google Scholar 

  • Fenty IG (2010) State estimation of the Labrador Sea with a coupled sea ice-ocean adjoint model. PhD thesis, Massachusetts Institute of Technology, p 277

  • Fenty IG, Heimbach P (2013) Coupled sea ice-ocean state estimation in the Labrador Sea and Baffin Bay. J Phys Oceanogr 43(6):884–904. doi:10.1175/JPO-D-12-065.1

    Article  Google Scholar 

  • Flocco D, Feltham DL, Turner AK (2010) Incorporation of a physically based melt pond scheme into the sea ice component of a climate model. J Geophys Res 115:C08012. doi:10.1029/2009JC005568

    Google Scholar 

  • Fowler C, Tschudi M (2003) Polar Pathfinder Daily 25 km EASE-grid sea ice motion vectors, monthly mean fields. National Snow and Ice Data Center, Boulder, Colorado

    Google Scholar 

  • Fujii Y, Kamachi M (2003a) A reconstruction of observed profiles in the sea east of Japan using vertical coupled temperature-salinity EOF modes. J Oceanogr 59:173–186

    Article  Google Scholar 

  • Fujii Y, Kamachi M (2003b) Three-dimensional analysis of temperature and salinity in the equatorial Pacific using a variational method with vertical coupled temperature-salinity empirical orthogonal function modes. J Geophys Res 108:3297. doi:10.1029/2002JC001745

    Article  Google Scholar 

  • Gill AE (1982) Atmosphere-ocean dynamics. Academic Press, London, p 662

    Google Scholar 

  • Hamilton D (1994) GTSPP builds an ocean temperature-salinity database. Earth Syst Monit 4:4–5

    Google Scholar 

  • Hibler WD III (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9:815–846

    Article  Google Scholar 

  • Hibler WD III, Walsh JE (1982) On modeling seasonal and interannual fluctuations of Arctic sea ice. J Phys Oceanogr 12:1514–1523

    Article  Google Scholar 

  • Honda M, Inoue J, Yamane S (2009) Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys Res Lett 36:L08707. doi:10.1029/2008GL037079

    Article  Google Scholar 

  • Hunke EC, Dukowicz JK (1997) The elastic-viscous-plastic model for sea ice dynamics. J Phys Oceanogr 94:1849–1867

    Article  Google Scholar 

  • Hunke EC, Dukowicz JK (2002) The elastic-viscous-plastic sea ice dynamics model in general orthogonal curvilinear coordinates on a sphere: incorporation of metric terms. Mon Weather Rev 130:1848–1865

    Article  Google Scholar 

  • Hunke EC, Lipscomb WH (2010) CICE: the Los Alamos Sea Ice Model Documentation and Software User’s Manual Version 4.1. LA-CC-06-012, Los Alamos National Laboratory, Los Alamos, pp 76

  • Inoue J, Hori ME, Enomoto T, Kikuchi T (2011) Intercomparison of surface heat transfer near the Arctic marginal ice zone for multiple reanalyses: a case study of September 2009. SOLA 7:57–60. doi:10.2151/sola.2011-015

    Article  Google Scholar 

  • Ishii M, Shouji A, Sugimoto S, Matsumoto T (2005) Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the KOBE collection. Int J Climatol 25:865–879

    Article  Google Scholar 

  • Jakobson E, Vihma T, Palo T, Jakobson L, Keernik H, Jaagus J (2012) Validation of atmospheric reanalyses over the central Arctic Ocean. Geophys Res Lett 39:L10802. doi:10.1029/2012GL051591

    Google Scholar 

  • Johannessen OM, Shalina EV, Miles MW (1999) Satellite evidence for an Arctic sea ice cover in transformation. Science 286:1937–1939. doi:10.1126/science.286.5446.1937

    Article  Google Scholar 

  • Johnson M, Proshutinsky A, Aksenov Y, Nguyen AT, Lindsay R, Haas C, Zhang J, Diansky N, Kwok R, Maslowski W, Häkkinen S, Ashik I, de Cuevas B (2012) Evaluation of Arctic sea ice thickness simulated by Arctic Ocean Model Intercomparison Project models. J Geophys Res 117:C00D13. doi:10.1029/2011JC007257

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Met Soc 77:437–471

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woolen J, Potter J, Fiorino M (2002) NCEP/DOE AMIP-II reanalysis (R-2). Bull Am Met Soc 83:1631–1643

    Article  Google Scholar 

  • Kawaguchi Y, Hutching JK, Kikuchi T, Morison JH, Krishfield RA (2012) Anomalous sea-ice reduction in the Eurasian Basin of the Arctic Ocean during summer 2010. Polar Sci 6:39–53

    Article  Google Scholar 

  • Kubota M, Kano A, Muramatsu H, Tomita H (2003) Intercomparison of various surface latent heat flux fields. J Clim 16:670–678

    Article  Google Scholar 

  • Kurihara Y, Sakurai T, Kuragano T (2006) Global daily sea surface temperature analysis using data from satellite microwave radiometer, satellite infrared radiometer and in situ observations. Wea Bull 73:1–18 (in Japanese)

    Google Scholar 

  • Kwok R, Cunningham GF, Pang SS (2004) Fram Strait sea ice outflow. J Geophys Res 109:C01009. doi:10.1029/2003JC001785

    Google Scholar 

  • Kwok R, Cunningham GF, Wensnahan M, Rigor I, Zwally HJ, Yi D (2009) Thinning and volume loss of the Arctic Ocean sea ice cover: 2003-2008. J Geophys Res 114:C07005. doi:10.1029/2009JC005312

    Google Scholar 

  • Large WG, Yeager SG (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR Tech Note 460, CGD Division of the National Center for Atmospheric Research, Boulder, Colorado

  • Large WG, Yeager SG (2009) The global climatology of an interannually varying air sea flux data set. Clim Dyn 33:341–364. doi:10.1007/s00382-008-0441-3

    Article  Google Scholar 

  • Laxon SW, Giles KA, Ridout AL, Wingham DJ, Willatt R, Cullen R, Kwok R, Schweiger A, Zhang J, Haas C, Hendricks S, Krishfield R, Kurtz N, Farrell S, Davidson M (2013) CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys Res Lett 40:732–737. doi:10.1002/grl.50193

    Article  Google Scholar 

  • Lindsay RW, Zhang J (2006) Assimilation of ice concentration in an ice-ocean model. J Atmos Ocean Technol 23:742–749

    Article  Google Scholar 

  • Lindsay RW, Haas C, Hendricks S, Hunkeler P, Kuntz N, Paden J, Panzer B, Sonntag J, Yungel J, Zhang J (2012) Seasonal forecasts of Arctic sea ice initialized with observations of ice thickness. Geophys Res Lett 39:L21502. doi:10.1029/2012GL053576

    Article  Google Scholar 

  • Lindsay RW, Wensnahan M, Schweiger A, Zhang J (2014) Evaluation of seven different atmospheric reanalysis products in the Arctic. J Climate 27:2588–2606. doi:10.1175/JCLI-D-13-00014.1

    Article  Google Scholar 

  • Lisæter KA, Rosanova J, Evensen G (2003) Assimilation of ice concentration in a coupled ice-ocean model using the ensemble Kalman filter. Ocean Dyn 53:368–388. doi:10.1007/s10236-003-0049-4

    Article  Google Scholar 

  • Liu J, Curry JA, Rossow WB, Key JR, Wang X (2005) Comparison of surface radiative flux data sets over the Arctic Ocean. J Geophys Res 110(C02015):1–13. doi:10.1029/2004JC002381

    Google Scholar 

  • Liu J, Zhang Z, Hu Y, Chen L, Dai Y, Ren X (2008) Assessment of surface air temperature over the Arctic Ocean in reanalysis and IPCC AR4 model simulations with IABP/POLES observations. J Geophys Res 113:D10105. doi:10.1029/2007JD009380

    Article  Google Scholar 

  • Liu J, Curry JA, Wang H, Song M, Horton RM (2012) Impact of declining Arctic sea ice on winter snowfall. Proc Natl Acad Sci 109:4074–4079

    Article  Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, Volume 1: Temperature. In: Levitus S (ed) NOAA Atlas NESDIS 68. US Government Printing Office, Washington DC, p 184

    Google Scholar 

  • Martin T, Wadhams P (1999) Sea-ice flux in the East Greenland Current. Deep-Sea Res II 46:1063–1082

    Article  Google Scholar 

  • Matsumura Y, Hasumi H (2008) Brine-driven eddies under sea ice leads and their impact on the Arctic Ocean mixed layer. J Phys Oceanogr 38:146–163. doi:10.1175/2007JPO3620.1

    Article  Google Scholar 

  • Meier WN, Maslanik JA (2003) Effect of environmental conditions on observed, modeled, and assimilated sea ice motion errors. J Geophys Res 108(C5):3152. doi:10.1029/2002JC001333

    Article  Google Scholar 

  • Meier WN, Maslanik JA, Fowler CW (2000) Error analysis and assimilation of remotely sensed ice motion within an Arctic sea ice model. J Geophys Res 105(C2):3339–3356

    Article  Google Scholar 

  • Mellor GL, Kantha L (1989) An ice-ocean coupled model. J Geophys Res 94:10937–10954

    Article  Google Scholar 

  • Miller PA, Laxon SW, Feltham DL, Cresswell DJ (2006) Optimization of a sea ice model using basinwide observations of Arctic sea ice thickness, extent, and velocity. J Clim 19(7):1089–1108

    Article  Google Scholar 

  • Murray RJ (1996) Explicit generation of orthogonal grids for ocean models. J Comput Phys 126:287–302

    Article  Google Scholar 

  • Nakamura N, Oort AH (1988) Atmospheric heat budgets of the polar regions. J Geophys Res 93(D8):9510–9524

    Article  Google Scholar 

  • Nguyen AT, Menemenlis D, Kwok R (2011) Arctic ice-ocean simulation with optimized model parameters: approach and assessment. J Geophys Res 116:C04025. doi:10.1029/2010JC006573

    Google Scholar 

  • Noh Y (2004) Sensitivity to wave breaking and the Prandtl number in the ocean mixed layer model and its dependence on latitude. Geophys Res Lett 31:L23305. doi:10.1029/2004GL021289

    Article  Google Scholar 

  • Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kadokura S, Wada K, Oyama R, Ose T, Mannoji N, Taira R (2007) The JRA-25 reanalysis. J Met Soc Jpn 85:369–432

    Article  Google Scholar 

  • Proshutinsky A, Aksenov Y, Kinney JC, Gerdes R, Golubeva E, Holland D, Holloway G, Jahn A, Johnson M, Popova E, Steele M, Watanabe E (2011) Recent advances in Arctic Ocean studies employing models from the Arctic Ocean model intercomparison project. Oceanogr 24:102–113

    Article  Google Scholar 

  • Rabe B, Karcher M, Schauer U, Toole JM, Krishfield RA, Pisarev S, Kauker F, Gerdes R, Kikuchi T (2011) Deep-Sea Res I 58:173–185. doi:10.1016/j.dsr.2010.12.002

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Rollenhagen K, Timmermann R, Janjić T, Schröter J, Danilov S (2009) Assimilation of sea ice motion in a finite-element sea ice model. J Geophys Res 114:C05007. doi:10.1029/2008JC005067

    Google Scholar 

  • Serreze MC, Barry RG (2005) The Arctic Climate System. In: Dessler AJ, Houghton JT, Rycroft MJ (eds) Cambridge Univ Press, New York, pp 385

  • Serreze MC, Barrett AP, Slater AG, Steele M, Zhang J, Trenberth KE (2007) The large-scale energy budget of the Arctic. J Geophys Res 112:D11122. doi:10.1029/2006JD008230

    Article  Google Scholar 

  • Stark JD, Ridley J, Martin M, Hines A (2008) Sea ice concentration and motion assimilation in a sea ice-ocean model. J Geophys Res 113:C05S91. doi:10.1029/2007JC004224

    Google Scholar 

  • Steele M, Boyd T (1998) Retreat of the cold halocline layer in the Arctic Ocean. J Geophys Res 103(C5):10419–10435

    Article  Google Scholar 

  • Steele M, Zhang J, Rothrock D, Stern H (1997) The force balance of sea ice in a numerical model of the Arctic Ocean. J Geophys Res 102(C9):21061–21079

    Article  Google Scholar 

  • Steele M, Morley R, Ermold W (2001) PHC: a global ocean hydrography with a high quality Arctic Ocean. J Clim 14:2079–2087

    Article  Google Scholar 

  • Thomas DR, Rothrock DA (1989) Blending sequential scanning multichannel microwave radiometer and buoy data into a sea ice model. J Geophys Res 94(C8):10907–10920

    Article  Google Scholar 

  • Thomas DR, Rothrock DA (1993) The Arctic Ocean ice balance: a Kalman smoother estimate. J Geophys Res 98(C6):10053–10067

    Article  Google Scholar 

  • Thomas DR, Martin S, Rothrock DA, Steele M (1996) Assimilating satellite concentrations into an Arctic mass balance model: 1979–1985. J Geophys Res 101(C9):20849–20868

    Article  Google Scholar 

  • Toyoda T, Awaji T, Sugiura N, Masuda S, Igarashi H, Sasaki Y, Hiyoshi Y, Ishikawa Y, Mochizuki T, Sakamoto TT, Tatebe H, Komuro Y, Suzuki T, Nishimura T, Mori M, Chikamoto Y, Yasunaka S, Imada Y, Arai M, Watanabe M, Shiogama H, Nozawa T, Hasegawa A, Ishii M, Kimoto M (2011) Impact of the assimilation of sea ice concentration data on an atmospheric-ocean-sea ice coupled simulation of the Arctic Ocean climate. SOLA 7:37–40. doi:10.2151/sola.2011-010

    Article  Google Scholar 

  • Toyoda T, Fujii Y, Yasuda T, Usui N, Iwao T, Kuragano T, Kamachi M (2013) Improved analysis of seasonal-interannual fields using a global ocean data assimilation system. Theor Appl Mech Jpn 61:31–48. doi:10.11345/nctam.61.31

    Google Scholar 

  • Trenberth KE, Fasullo JT (2010) Simulation of present-day and twenty-century energy budgets of the Southern Ocean. J Clim 23:440–454. doi:10.1175/2009JCL13152.1

    Article  Google Scholar 

  • Tsujino H, Motoi T, Ishikawa I, Hirabara M, Nakano H, Yamanaka G, Yasuda T, Ishiazaki H (2010) Reference manual for the Meteorological Research Institute Community Ocean Model (MRI.COM) version 3. Tech Rep 59, Meteorological Research Institute, Tsukuba, Japan, pp 241

  • Tsujino H, Hirabara M, Nakano H, Yasuda T, Motoi T, Yamanaka G (2011) Simulating present climate of the global ocean-ice system using the Meteorological Research Institute Community Ocean Model (MRI.COM): simulation characteristics and variability in the Pacific sector. J Oceanogr 67:449–479. doi:10.1007/s10872-011-0050-3

    Article  Google Scholar 

  • Uotila P, O’Farrell S, Marsland SJ, Bi D (2012) A sea-ice sensitivity study with a global ocean-ice model. Ocean Model 51:1–18. doi:10.1016/j.ocemod.2012.04.002

    Article  Google Scholar 

  • Uppala SM, Kållberg PW, Simmons AJ, Andrae U, da Costa BV, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simons P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. QJR Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Usui N, Ishizaki S, Fujii Y, Tsujino H, Yasuda T, Kamachi M (2006) Meteorological Research Institute multivariate ocean variational estimation (MOVE) system: some early results. Adv Space Res 37:806–822. doi:10.1016/j.asr.2005.09.022

    Article  Google Scholar 

  • Usui N, Imaizumi T, Tsujino H (2010) Toward introduction of assimilation of ice concentration into MOVE/MRI.COM: a model validation and a simple assimilation experiment in the Sea of Okhotsk. Sokkou-Jihou 77:S71–S82 (in Japanese)

    Google Scholar 

  • Van Woert ML, Zou CZ, Meier WN, Hovey PD, Preller RH, Weaver RLS, Steffen K, Heinrichs J, Maslanik JA, Posey PG (2004) Forecast verification of the Polar Ice Prediction System (PIPS) sea ice concentration fields. J Atmos Ocean Technol 21:944–957

    Article  Google Scholar 

  • Vancoppenolle M, Timmermann R, Ackley SF, Fichefet T, Goosse H, Heil P, Leonard KC, Lieser J, Nicolaus M, Papakyriakou T, Tison JL (2011) Assessment of radiation forcing data sets for large-scale sea ice models in the Southern Ocean. Deep Sea Res II 58:1237–1249. doi:10.1016/j.dsr2.2010.10.039

    Article  Google Scholar 

  • Vinje T, Nordlund N, Kvambekk Å (1998) Monitoring ice thickness in the Fram Strait. J Geophys Res 103:10437–10449

    Article  Google Scholar 

  • Williams TD, Bennetts LG, Squire VA, Dumont D, Bertino L (2013a) Wave-ice interactions in the marginal ice zone. Part 1: theoretical foundations. Ocean Model 71:81–91. doi:10.1016/j.ocemod.2013.05.010

    Article  Google Scholar 

  • Williams TD, Bennetts LG, Squire VA, Dumont D, Bertino L (2013b) Wave-ice interactions in the marginal ice zone. Part 2: numerical implementation and sensitivity studies along 1D transects of the ocean surface. Ocean Model 71:92–101. doi:10.1016/j.ocemod.2013.05.011

    Article  Google Scholar 

  • Woodgate RA, Aagaard K (2005) Revising the Bering Strait freshwater flux into the Arctic Ocean. Geophys Res Lett 32:L02602. doi:10.1029/2004GL021747

    Google Scholar 

  • Yi D, Zwally J (2010) Arctic sea ice freeboard and thickness. National Snow and Ice Data Center, Boulder, Colorado

    Google Scholar 

  • Zhang J, Thomas DR, Rothrock DA, Lindsay RW, Yu Y (2003) Assimilation of ice motion observations and comparisons with submarine ice thickness data. J Geophys Res 108(C6):3170. doi:10.1029/2001JC001041

    Article  Google Scholar 

Download references

Acknowledgments

We are greatly indebted to Dr. J. P. Matthews for reviewing our paper. We thank three anonymous reviewers and Dr. K. Shimada, the editor, for their constructive comments. This work was supported partly by the Research Program on Climate Change Adaptation, the Green Network of Excellence (GRENE) Arctic Climate Change Research Project of the Ministry of Education, Culture, Sports, Science and Technology of the Japanese government and by the GCOM RA5 project "Retreival of Total Sea Ice Concentration from AMSR-E and AMSR2 Data using Optimal Estimation Techniques" of the Japan Aerospace Exploration Agency (JAXA). The data for this paper are available at the websites of NOAA’s National Centers for Environmental Information (for ETOPO5; http://www.ngdc.noaa.gov/mgg/fliers/93mgg01.html), Japan Meteorological Agency (for JRA-25/JCDAS; http://jra.kishou.go.jp/JRA-25/index_en.html), NOAA’s National Centers for Environmental Information (for WOD09, GTSPP and WOA09; http://www.nodc.noaa.gov/access/allproducts.html), AVISO (for the altimeter products; http://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global.html), NEAR-GOOS (for MGDSST and COBE-SST; http://goos.kishou.go.jp/), Polar Science Center (for PHC; http://psc.apl.washington.edu/nonwp_projects/PHC/Climatology.html), and National Snow and Ice Data Center (for sea ice motion vectors and thickness; http://nsidc.org/data).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Toyoda.

Appendix: Experiment with corrections for atmospheric forcing and ocean temperature fields

Appendix: Experiment with corrections for atmospheric forcing and ocean temperature fields

As described in Sect. 3, the SAT (specifically, the 2-m air temperature) of the forcing field is modified by assuming that the top temperature of the sea ice in each category does not change, and that the differences between the SAT and the grid-averaged sea ice top-ocean surface temperature are conserved. The correction for SAT (\(\Delta {\text{SAT}}^{1}\)) is then calculated as follows:

$$\Delta \text{SAT}^{1} = \mathop \sum \limits_{n = 1}^{5} \left[ {\frac{{\text{SIC}_{n}^{f} }}{{\mathop \sum \nolimits_{{n^{'} = 1}}^{5} \text{SIC}_{{n^{'} }}^{f} }} \times \left( {\text{SIC}^{a} - \mathop \sum \limits_{{n^{'} = 1}}^{5} \text{SIC}_{{n^{'} }}^{f} } \right) \times { \hbox{min} }\left( {\text{TIT}_{n}^{f} - \text{TO}^{f} ,0} \right)} \right]\quad \text{for}\quad \mathop \sum \limits_{n = 1}^{5} \text{SIC}_{n}^{f} \ge \text{SIC}_{{\text{small}}} ,$$
(3)

where SICf, TITf, and TOf represent the first guesses of the SIC and the sea ice top and oceanic surface temperatures, respectively. The quantity SICa is the SIC analysis value obtained by 3DVAR, and n and are the category numbers. The function “min”, which returns the smallest value of the elements, is used because of the difference in the relationship between SAT and SIC when TITf > TOf. SICsmall is introduced to avoid singularities. Note that TITf adopts the snow-top temperature if snow exists on the ice. If the first guess of SIC is smaller than SICsmall, then

$$\Delta \text{SAT}^{1} = { \hbox{min} }\left[ {\text{TF}\left( {\text{SO}^{f} } \right) - \text{TO}^{f} ,0} \right] \times \left( {\text{SIC}^{a} - \mathop \sum \limits_{n' = 1}^{5} \text{SIC}_{n'}^{f} } \right),$$
(4)

where TF represents the freezing-point temperature, which is dependent on the salinity, and SOf is the first guess of the ocean surface salinity. The correction for atmospheric specific humidity (\(\Delta q^{1}\)) is calculated as follows:

$$\Delta q^{1} = \Delta \text{SAT}^{1} \times \frac{{\text{d}q}}{{\text{d}T}}|_{{T = \text{TO}^{f} }} ,$$
(5)

where the differential of saturated specific humidity with respect to temperature at the surface, \(\frac{{\text{d}q}}{{\text{d}T}}\), is calculated following Gill (1982).

The atmospheric corrections described above are imposed on the forcing field as constant offsets during the whole assimilation window. This is called the “intermediate assimilation” run. Because the SIC increments are redistributed among the categories according to the dynamical processes in the sea ice model, the simulated SIC field can deviate from the 3DVAR analysis field, although it should be closer than the first-guess field. To achieve an SIC field that is closer to the 3DVAR analysis field, the corrections for the forcing field are modified as follows:

$$\Delta \text{SAT}^{2} = \Delta \text{SAT}^{1} + \mathop \sum \limits_{n = 1}^{5} \left[ {\frac{{\text{SIC}_{n}^{i} }}{{\mathop \sum \nolimits_{{n^{{\prime }} = 1}}^{5} \text{SIC}_{{n^{{\prime }} }}^{i} }} \times \left( {\text{SIC}^{a} - \mathop \sum \limits_{{n^{{\prime }} = 1}}^{5} \text{SIC}_{{n^{{\prime }} }}^{i} } \right) \times { \hbox{min} }\left( {\text{TIT}_{n}^{i} - \text{TO}^{i} ,0} \right)} \right]\quad \text{for}\quad \mathop \sum \limits_{n = 1}^{5} \text{SIC}_{n}^{i} \ge \text{SIC}_{{\text{small}}} ,$$
(6)
$$\Delta \text{SAT}^{2} = \Delta \text{SAT}^{1} + \hbox{min} \left[ {\text{TF}\left( {\text{SO}^{i} } \right) - \text{TO}^{i} ,0} \right] \times \left( {\text{SIC}^{a} - \mathop \sum \limits_{n = 1}^{5} \text{SIC}_{n}^{i} } \right)\quad \text{for}\quad \mathop \sum \limits_{n = 1}^{5} \text{SIC}_{n}^{i} < \text{SIC}_{{\text{small}}} ,$$
(7)
$$\Delta q^{2} = \Delta q^{1} + \left( {\Delta \text{SAT}^{2} - \Delta \text{SAT}^{1} } \right) \times \left. {\frac{{\text{d}q}}{{\text{d}T}}} \right|_{{T = \text{TO}^{i} }} ,$$
(8)

where the modified (previous) correction values are denoted by the superscript “2” (“1”), and superscript “i” represents the intermediate assimilation result described above instead of the first guess (superscript “f”).

In addition to the second correction for the forcing field (Eqs. (68)), a correction for the ocean temperature field is introduced here. Only the former is introduced in the intermediate assimilation run in order to ensure that the effects of corrections for the atmospheric forcing and ocean temperature fields on the simulated SIC field are not duplicated. Note that the differences between the current and previous correction values for the forcing field are generally much smaller in amplitude than the previous correction values. We assume that the modeled ocean temperature at a grid point is the average temperature of the freezing-point temperature under sea ice and the ice-free ocean temperature within the grid. The ocean temperature correction from the SIC change is then calculated as follows:

$$\Delta \text{TO}_{1} = \hbox{min} \left[ {\text{TF}\left( {\text{SO}^{i} } \right) - \text{TO}^{i} ,0} \right] \times \frac{{\text{SIC}^{a} - \mathop \sum \nolimits_{n = 1}^{5} \text{SIC}_{n}^{i} }}{{1 - \mathop \sum \nolimits_{n = 1}^{5} \text{SIC}_{n}^{i} }}\quad\quad \text{for}\quad \mathop \sum \limits_{n = 1}^{5} \text{SIC}_{n}^{i} \le 0.9.$$
(9)

A threshold value of 0.9 is used in Eq. (9), as this correction is assumed to work primarily in the marginal ice zones. In addition, we consider the effect of salinity changes on the ocean surface layer due to sea ice melting on the freezing-point temperature, as follows:

$$\Delta \text{TO}_{2} = \left[ {\text{TF}\left( {\frac{{H_{s} \times \text{SO}^{i} + H_{{\text{melt}}}^{i} \times S_{{\text{ice}}} }}{{H_{s} + H_{{\text{melt}}}^{i} }}} \right) - \text{TF}\left( {\text{SO}^{i} } \right)} \right] \times \text{SIC}^{a} \quad\quad \text{for}\quad \text{SIC}^{a} - \mathop \sum \limits_{n = 1}^{5} \text{SIC}_{n}^{i} < 0,$$
(10)

where S ice is sea ice salinity of 4 psu, and the 10-m-thick ocean surface layer is taken to be H s = 10 m. The grid-averaged change in water thickness due to sea ice melting in the SIC assimilation is

$$H_{{\text{melt}}}^{i} = - \frac{{\rho_{i} }}{\rho_{w} } \times \sum \limits_{n = 1}^{5} \left[ {H_{n}^{i} \times \frac{{\text{SIC}_{n}^{i} }}{{\sum \nolimits_{{n^{{\prime }} = 1}}^{5} \text{SIC}_{{n^{{\prime }} }}^{i} }} \times \left( {\text{SIC}^{a} - \sum \limits_{n = 1}^{5} \text{SIC}_{n}^{i} } \right)} \right],$$
(11)

where \(H_{n}^{i}\) is the modeled sea ice thickness (in meters) of category n, and ρ i and ρw represent the density of sea ice and seawater, respectively. \(\Delta \text{TO}_{2}\) is not generated when the increment (\(\text{SIC}^{a} - \mathop \sum \nolimits_{n = 1}^{5} \text{SIC}_{n}^{i}\)) is positive, because of the successful use of subgrid-scale parameterization to distribute the brine rejection associated with sea ice formation at the base of the mixed layer (e.g., Duffy et al. 1999; Matsumura and Hasumi 2008). The total ocean temperature correction is calculated as follows:

$$\Delta \text{TO} = \Delta \text{TO}_{1} + \Delta \text{TO}_{2}$$
(12)

and is inserted into the modeled ocean temperature field in the surface mixed layer using the IAU method, in addition to the original temperature update derived using the T–S EOF modes. Specifically, a value \(\Delta \text{TO}/N\) is constantly inserted into the model at each time step during the assimilation window, where N is the number of time steps in the assimilation window. The surface mixed layer depth is defined here as the depth at which temperature and salinity values differ from the surface values by 0.5 °C or 0.2 psu, respectively, and is limited to a maximum value of 100 m. This definition basically corresponds to the top of the strong halocline in the Arctic Ocean (e.g., Steele and Boyd 1998), even in the coarse-resolution model used in this study. Note that the values of 0.5 °C and 0.2 psu are roughly equivalent in terms of their effect on potential density.

The integration with the SIC assimilation through the use of the corrections for both the atmospheric forcing and ocean temperature fields as described above is the final step in an assimilation window, and gives the initial condition for the next window.

The complexity of the present scheme is the result of sea ice characteristics. The updates of the correction for the atmospheric forcing field (ΔSAT2 and Δq 2), as well as additional correction for the temperature field (ΔTO2), are needed because of the nonlinearity of the sea ice process, which is adjusted iteratively in the four-dimensional variational method. Our use of criteria (SICsmall and SIClarge) for separating cases (e.g., Eqs. (3) and (4)) to avoid singularity is due to the discontinuous distribution of the sea ice field (e.g., 0 ≤ SIC ≤ 1). Note that sea ice models usually set a minimum thickness for a similar purpose. The details described in this appendix can facilitate an assimilation of sea ice data in other studies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toyoda, T., Fujii, Y., Yasuda, T. et al. Data assimilation of sea ice concentration into a global ocean–sea ice model with corrections for atmospheric forcing and ocean temperature fields. J Oceanogr 72, 235–262 (2016). https://doi.org/10.1007/s10872-015-0326-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-015-0326-0

Keywords

Navigation