Skip to main content
Log in

Pyridine and Morpholine Inclusion by a Binaphthyl Host

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The host compound 3,3′-bis (9-hydroxy-9-fluorenyl)-2,2′-binaphthyl formed three inclusion compounds H.2PYR (1), H.2MOR (2) and H.PYR/MOR (3) with pyridine (PYR), morpholine (MOR) and their equimolar mixture, respectively. 1 crystallized in the triclinic space group P-1 with a = 11.4201(2), b = 13.2910(2), c = 16.2395(2) Å, α = 106.78(1), β = 99.11(1), γ = 112.34(1)o. 2 crystallized in the monoclinic space group P21/c with a = 9.8109(8), b = 38.740(3), c = 11.6655(9) Å, β = 108.444(2)o. 3 crystallized in the triclinic space group P-1with a = 11.4342(3), b = 13.4093(4), c = 16.1414(6) Å, α = 106.520(15), β = 98.760(18), γ = 112.390(16)o. The crystal structures of the three inclusion compounds were elucidated and their thermal behaviour was analysed by thermal gravimetry, differential scanning calorimetry and hot stage microscopy. Thermal analysis of the inclusion compounds showed that the guest desorption occurred in two steps with the free guest released at the first step followed by that of hydrogen-bonded guest. The measure of stability of the inclusion compounds derived from thermal analysis revealed that 1 is more stable than 2. In 3, even though there are two different competitive guest molecules (PYR and MOR) present in the structure PYR is preferably encapsulated within the molecular cage, presumably because it is the preferred H-bond acceptor.

Graphical Abstract

The host compound 3,3′-bis (9-hydroxy-9-fluorenyl)-2,2′-binaphthyl formed inclusion compounds with pyridine and morpholine and their equimolar mixture. The crystal structures of the three inclusion compounds were elucidated and their thermal stabilities were analysed by thermal gravimetry, differential scanning calorimetry and hot stage microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Weber E (1991) In: Atwood JL, Davies JED, MacNicol DD (eds) Inclusion compounds. Oxford University Press, Oxford, p 188

    Google Scholar 

  2. Toda F, Bishop R (2004) Separations and reactions in organic supramolecular chemistry. Perspectives in supramolecular chemistry. Wiley, Chichester

    Chapter  Google Scholar 

  3. Arad-Yellin R, Green BS, Knossow M, Tsoucaris G (1984) Enantiomeric selectivity of host lattices, Inclusion Compounds. Academic Press, New York, p 263

    Google Scholar 

  4. Caira MR, Horne A, Nassimbeni LR, Toda F (1997) J Mater Chem 7:2145

    Article  CAS  Google Scholar 

  5. Bond DR, Johnson L, Nassimbeni LR, Toda F (1991) J Solid State Chem 92:68

    Article  CAS  Google Scholar 

  6. Caira MR, Le Roex T, Nassimbeni LR, Ripmeester JA, Weber E (2004) Org Biomol Chem 2:2299

    Article  CAS  Google Scholar 

  7. Weber E (1987) Topics in current chemistry, vol 140. Springer-Veslag, Berlin

    Google Scholar 

  8. Weber E, Menihold D, Haase R, Seidite W, Rheinwald G (2005) Supramol Chem 17:303

    Article  CAS  Google Scholar 

  9. Meinhold D, Seichter W, Köhnke K, Seidel J, Weber E (1997) Adv Mater 9:958

    Article  CAS  Google Scholar 

  10. Haase R, Meinhold DS, Thomas B, Weber E, Rheinwald G (2002) Struct Chem 13:471

    Article  CAS  Google Scholar 

  11. Nassimbeni LR, Marivel S, Su H, Weber E (2013) RSC Adv 3:25758

    Article  CAS  Google Scholar 

  12. COLLECT (2000) data collection software: Nonius BV Delft, The Netherlands

  13. Otwinowski Z, Minor W (1997) Methods Enzymol 276:307

    Article  CAS  Google Scholar 

  14. Bruker (2004) SAINT-Plus (including XPREP) Version 7.12. Bruker AXS Inc, Madison, Wisconsin, USA

  15. Bruker (2003) XPREP2 Version 6.14. Bruker AXS Inc, Madison, Wisconsin, USA

  16. Sheldrick GM (2008) Acta Crystallogr A64:112

    Article  Google Scholar 

  17. Barbour LJ (2001) J Supramol Chem 1:189

    Article  CAS  Google Scholar 

  18. Spek AL (2009) Acta Crystallogr D65:148

    Google Scholar 

  19. Mercury 3.1 (2009) Supplied with Cambridge Structural Database CCDC: Cambridge UK

  20. Nishio M, Umezawa Y, Honda K, Tsuboyama S, Suezawa H (2009) CrystEngComm 11:1757

    Article  CAS  Google Scholar 

  21. Caira MR, Nassimbeni LR, Niven ML, Schubert W-D, Weber E, Dorpinghaus N (1990) J Chem Soc Perkin Trans 2 12:2129

    Article  Google Scholar 

Download references

Acknowledgments

M. S. thanks the Claude Leon Foundation for a Postdoctoral Fellowship. We thank the National Research Foundation (Pretoria) and the University of Cape Town for research funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marivel Samipillai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samipillai, M., Nassimbeni, L.R. & Weber, E. Pyridine and Morpholine Inclusion by a Binaphthyl Host. J Chem Crystallogr 44, 293–300 (2014). https://doi.org/10.1007/s10870-014-0513-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-014-0513-7

Keywords

Navigation