Skip to main content
Log in

Chlorpromazine and dimethyl sulfoxide modulate the catalytic activity of the plasma membrane Ca2+-ATPase from human erythrocyte

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The plasma membrane Ca2+-ATPase (PMCA) removes Ca2+ from the cytosol into the extracellular space. Its catalytic activity can be stimulated by calmodulin (CaM) or by limited proteolysis. We evaluated the effect of chlorpromazine (CPZ) and dimethyl sulfoxide (DMSO) over the hydrolytic activity of PMCA. Activity was monitored in three different forms: native, CaM-activated and proteolyzed by trypsin. CPZ appears to inhibit PMCA without directly interfering with the C-terminal site, since it is affected by CaM and proteolysis. Although the treatment of PMCA with trypsin and CaM produces an activation, it also produces an enzymatic form that is more sensitive to inhibition by CPZ. The same case was observed in the DMSO inhibition experiments. In the absence of CPZ, DMSO produces a progressive loss of activity, but in the presence of CPZ the profile of activity against DMSO changes and produces a recovery of activity, indicating a possible partition of CPZ by the solvent. Increasing Ca2+ concentrations indicated that CPZ interacts with PMCA rather than with CaM. This observation is supported by docking analysis that suggests that the CPZ-PMCA interaction is non-competitive. We propose that CPZ interacts with the state of lower affinity for Ca2 +.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arakawa T, Kita Y, Timasheff SN (2007) Protein precipitation and denaturation by dimethyl sulfoxide. Biophys Chem 131:62–70. https://doi.org/10.1016/j.bpc.2007.09.004

    Article  CAS  Google Scholar 

  • Baykov AA, Evtushenko OA, Avaevam SM (1988) A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal Biochem 171:266–270

    Article  CAS  Google Scholar 

  • Benaim G, Zurini M, Carafoli E (1984) Different conformational states of the purified Ca2+-ATPase of the erythrocyte plasma membrane revealed by controlled trypsin proteolysis. J Biol Chem 259:8471–8477

    CAS  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21. https://doi.org/10.1038/35036035

    Article  CAS  Google Scholar 

  • Blinks JR, Wier WG, Hess P, Prendergast FG (1982) Measurement of Ca2+ concentrations in living cells. Prog Biophys Mol Biol 40:1–114

    Article  CAS  Google Scholar 

  • Boczek T, Lisek M, Ferenc B, Zylinska L (2015) Plasma membrane Ca(2+)-ATPase is a novel target for ketamine action. Biochim Biophys Res Commun 465:312–317

    Article  CAS  Google Scholar 

  • Böttcher CJF, Van Gent CM, Pries C (1961) A rapid a sensitive sub-micro phosphorus determination. Anal Chim Acta 24:203–204

    Article  Google Scholar 

  • Brini M, Cali T, Ottolini D, Carafoli E (2013) The plasma membrane calcium pump in health and disease. FEBS J 280:5385–5387. https://doi.org/10.1111/febs.12193

    Article  CAS  Google Scholar 

  • Burke RW, Diamondstone BI, Velapoldi RA, Menis O (1974) Mechanisms of the Liebermann–Burchard and Zak color reactions for cholesterol. Clin Chem 20:794–801

    CAS  Google Scholar 

  • Daniel JA, Chau N, Abdel-Hamid MK, Hu L, von Kleist L, Whiting A, Krishnan S, Maamary P, Joseph SR, Simson F, Haucke V, McCluskey A, Robinson PJ (2015) Phenothiazine-derived antipsicotic drugs inhibit dynamin and clathrin-mediated endocytosis. Traffic 16:635–654. https://doi.org/10.1111/tra.12272

    Article  CAS  Google Scholar 

  • De Meis L, Gómez T, Gómez A (1988) Inhibition of mitochondrial F1 ATPase and sarcoplasmic reticulum ATPase by hydrophobic molecules. Eur J Biochem 171:343–349. https://doi.org/10.1111/j.1432-1033.1988.tb13796.x

    Article  Google Scholar 

  • Downes P, Michell RH (1981) Human erythrocyte membranes exhibit a cooperative calmodulin-dependent Ca2+-ATPase of high calcium sensitivity. Nature 290:270–271

    Article  CAS  Google Scholar 

  • Fabiato A (1988) Computer programs for calculating total from specified free or free from specific total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods Enzymol 157:378–417. https://doi.org/10.1016/0076-6879(88)57093-3

    Article  CAS  Google Scholar 

  • Falchetto R, Vorherr T, Brunner J, Carafoli E (1991) The plasma membrane Ca2+ pump contains a site that interacts with its calmodulin-binding domain. J Biol Chem 266:2930–2936

    CAS  Google Scholar 

  • Falchetto R, Vorherr T, Carafoli E (1992) The calmodulin binding site of the plasma membrane Ca2+ pump interacts with the transduction domain of the enzyme. Protein Sci 1:1613–1621. https://doi.org/10.1002/pro.5560011209

    Article  CAS  Google Scholar 

  • Ficarra S, Russo A, Barreca D, Giunta E, Galtieri A, Tellone E (2016) Short-term effects of chlorpromazine on oxidative stress in erythrocyte functionality: activation of metabolism and membrane perturbation. Oxidative Med Cell Longev 2016. https://doi.org/10.1155/2016/2394130

  • Freire MM, Carvalho-Alves PC, Barrabin H, Scofano HM (1997) Pseudosubstrate hydrolysis by the erythrocyte plasma membrane Ca2+-ATPase: kinetic evidence for a modified E1 conformation in dimethylsulfoxide. Biochim Biophys Acta 1323:291–298. https://doi.org/10.1016/S0005-2736(96)00198-8

    Article  CAS  Google Scholar 

  • Guevara EA, de Lourdes Barriviera M, Hassón-Voloch A, Louro SR (2007) Chlorpromazine binding to Na+, K+-ATPase and photolabeling: involvement of the ouabain site monitored by fluorescence. Photochem Photobiol 83:914–919. https://doi.org/10.1111/j.1751-1097.2007.00077.x

    Article  CAS  Google Scholar 

  • Gurtovenko AA, Anwar J (2007) Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. J Phys Chem 111:10453–10460. https://doi.org/10.1021/jp073113e

    Article  CAS  Google Scholar 

  • He F, Liu W, Zheng S, Zhou L, Ye B, Qi Z (2012) Ion transport through dimethyl sulfoxide (DMSO) induced transient water pores in cell membranes. Mol Membr Biol 29:107–113. https://doi.org/10.3109/09687688.2012.687460

    Article  CAS  Google Scholar 

  • James P, Vorherr T, Krebs J, Morelli A, Castello G, McCormick DJ, Penniston JT, De Flora A, Carafoli E (1989) Modulation of erythrocyte Ca2+-ATPase by selective calpain cleavage of the calmodulin-binding domain. J Biol Chem 264:8289–8296

    CAS  Google Scholar 

  • Khan SZ, Longland CL, Michelangeli F (2000) The effects of phenothiazines and other calmodulin antagonists on the sarcoplasmic and endoplasmic reticulum Ca2+ pumps. Biochem Pharmacol 60:1797–1806. https://doi.org/10.1016/S0006-2952(00)00505-0

    Article  CAS  Google Scholar 

  • Kitamura K, Goto T, Kitade T (1998) Second derivative spectrophotometric determination of partition coefficients of phenothiazine derivatives between human erythrocyte ghost membranes and water. Talanta 43:1433–1438. https://doi.org/10.1016/S0039-9140(98)00014-9

    Article  Google Scholar 

  • Kuroda Y, Kitamura K (1984) Intra- and intermolecular 1H–1H nuclear Overhauser effect studies on the interactions of chlorpromazine with lecithin. J Am Chem Soc 106:1–6. https://doi.org/10.1021/ja00313a001

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685

    Article  Google Scholar 

  • Lanzetta PA, Álvarez LJ, Reinach PS, Candia OA (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100:95–97. https://doi.org/10.1016/0003-2697(79)90115-5

    Article  CAS  Google Scholar 

  • Lieber MR, Lange Y, Weinstein RS, Steck TL (1984) Interaction of chlorpromazine with the human erythrocyte membrane. J Biol Chem 259:9225–9234

    CAS  Google Scholar 

  • Lopez-Muñoz F, Alamo C, Cuenca E, Shen WW, Clervoy P, Rubio G (2005) History of the discovery and clinical introduction of chlorpromazine. Ann Clin Psychiatry 17:113–135. https://doi.org/10.1080/10401230591002002

    Article  Google Scholar 

  • Lopreiato R, Giacomello M, Carafoli E (2014) The plasma membrane calcium pump: new ways to look at an old enzyme. J Biol Chem 289:10261–10268. https://doi.org/10.1074/jbc.O114.555565

    Article  CAS  Google Scholar 

  • Louro SR, Anteneodo C, Wajnberg E (1998) Carboxyl groups at the membrane interface as molecular targets for local anesthetics. Biophys Chem 74:35–43. https://doi.org/10.1016/S0301-4622(98)00159-8

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Martins PT, Velazquez-Campoy A, Vaz WL, Cardoso RM, Valério J, Moreno MJ (2012) Kinetics and thermodynamics of chlorpromazine interaction with lipid bilayers: effect of charge and cholesterol. J Am Chem Soc 134:4184–4195. https://doi.org/10.1021/ja209917q

    Article  CAS  Google Scholar 

  • McConnell EJ, Wagoner MJ, Keenan CE, Raess BU (1999) Inhibition of calmodulin-stimulated (Ca2+ Mg2+) ATPase activity by dimethyl sulfoxide. Biochem Pharmacol 57:39–44. https://doi.org/10.1016/S0006-2952(98)00259-7

    Article  CAS  Google Scholar 

  • Niggli V, Adunyah ES, Penniston J, Carafoli E (1981) Purified (Ca2+-Mg2+)-ATPase of the erythrocyte membrane. J Biol Chem 256:395–401

    CAS  Google Scholar 

  • Pedersen PL, Carafoli E (1987) Ion motive ATPases. I. Ubiquity, properties, and significance to cell function. Trends Biochem Sci 12:146–150. https://doi.org/10.1016/0968-0004(87)90071-5

    Article  CAS  Google Scholar 

  • Pickholz M, Oliveira ON Jr, Skaf MS (2007) Interactions of chlorpromazine with phospholipid monolayers: effects of the ionization state of the drug. Biophys Chem 125:425–434. https://doi.org/10.1016/j.bpc.2006.10.010

    Article  CAS  Google Scholar 

  • Plenge-Tellechea F, Soler F, Fernandez-Belda F (1999) Tricyclic antidepressants inhibit the Ca2+−dependent ATPase activity from plasma membrane. Arch Biochem Biophys 370:119–125. https://doi.org/10.1006/abbi.1999.1375

    Article  CAS  Google Scholar 

  • Prozialeck WC, Wallace TL, Weiss B (1987) Differential inhibition of calmodulin-sensitive phosphodiesterase and Ca2+−adenosine triphosphatase by chlorpromazine-linked calmodulin. J Pharmacol Exp Ther 243:171–179

    CAS  Google Scholar 

  • Schwartzenbach GH, Senn H, Anderegg G (1957) Komplexone. XXIX. Ein grosser Celateffekt besonderer. Helv Chim Acta 40:1886–1900

    Article  Google Scholar 

  • Shull GE, Greeb J (1988) Molecular cloning of two isoforms of the plasma membrane Ca2+−transporting ATPase from rat brain. Structural and functional domains exhibit similarity to Na+,K+− and other cation transport ATPases. J Biol Chem 263:8646–8657

    CAS  Google Scholar 

  • Smallwood JI, Gügi B, Rasmussen H (1988) Regulation of erythrocyte Ca2+ pump activity by protein kinase C. J Biol Chem 263:2195–2203

    CAS  Google Scholar 

  • Soler F, Plenge-Tellechea F, Fortea I, Fernandez-Belda F (2000) Clomipramine and related structures as inhibitors of the skeletal sarcoplasmic reticulum Ca2+ pump. J Bioenerg Biomembr 32:133–142

    Article  CAS  Google Scholar 

  • Spinedi A, Pacini L, Limatola C, Luly P, Farias RN (1991) A study of human erythrocyte acetylcholinesterase inhibition by chlorpromazine. Biochem J 278:461–463

    Article  CAS  Google Scholar 

  • Stieger J, Schatzmann HJ (1981) Metal requirement of the isolated red cell Ca2+−pump ATPase after eliminate of the calmodulin dependence by tryptic attack. Cell Calcium 2:601–106

    Article  CAS  Google Scholar 

  • Takegami S, Kitamura K, Kitade T, Takashima M, Ito M, Nakagawa E, Sone M, Sumitani R, Yasuda Y (2005) Effects of phosphatidylserine and phosphatidylethanolamine content on partitioning of triflupromazine and chlorpromazine between phosphatidylcholine–aminophospholipid bilayer vesicles and water studied by second-derivative spectrophotometry. Chem Pharm Bull 53:147–150. https://doi.org/10.1248/cpb.53.147

    Article  CAS  Google Scholar 

  • Tidow H, Poulsen LR, Andreeva A, Knudsen M, Hein KL, Wiuf C, Palmgren MG, Nissen P (2012) A bimodular mechanism of calcium control in eukaryotes. Nature 491:468–472. https://doi.org/10.1038/nature11539

    Article  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci 76:4350–4354

    Article  CAS  Google Scholar 

  • Verma AK, Enyedi A, Filoteo AG, Penniston JT (1994) Regulatory region of plasma membrane Ca2+ pump. J Biol Chem 269:1687–1691

    CAS  Google Scholar 

  • Villalobo A, Brown L, Roufogalis BD (1986) Kinetic properties of the purified Ca2+−translocating ATPase from human erythrocyte plasma membrane. Biochim Biophys Acta 854:9–20

    Article  CAS  Google Scholar 

  • Wang KK, Villalobo A, Roufogalis BD (1988) Activation of the Ca2+-ATPase of human erythrocyte membrane by an endogenous Ca2+−dependent neutral protease. Arch Biochem Biophys 260:696–704. https://doi.org/10.1016/0003-9861(88)90498-5

    Article  CAS  Google Scholar 

  • Welti R, Mullikin LJ, Yoshimura T, Helmkamp GM Jr (1984) Partition of amphiphilic molecules into phospholipid vesicles and human erythrocyte ghosts: measurements by ultraviolet difference spectroscopy. Biochemistry 23:6086–6091

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Programa Integral de Fortalecimiento Institucional (PIFI/UACJ/ICB-2014-2015), Secretaría de Educación Pública, Mexico), for the development of Academic Cores at the Universidad Autónoma de Ciudad Juárez. We also wish to thank the Academia de Bioquimica at the Instituto de Ciencias Biomedicas for technical support and supplies provided in our lipid measurements. Special thanks to QFB Cesar Rivas for his technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Plenge-Tellechea.

Electronic supplementary material

ESM 1

(PDF 300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plenge-Tellechea, F., Domínguez-Solís, C.A., Díaz-Sánchez, Á.G. et al. Chlorpromazine and dimethyl sulfoxide modulate the catalytic activity of the plasma membrane Ca2+-ATPase from human erythrocyte. J Bioenerg Biomembr 50, 59–69 (2018). https://doi.org/10.1007/s10863-017-9741-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-017-9741-9

Keywords

Navigation