Skip to main content
Log in

Boosting the resolution of low-field \(^{15}\hbox {N}\) relaxation experiments on intrinsically disordered proteins with triple-resonance NMR

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Improving our understanding of nanosecond motions in disordered proteins requires the enhanced sampling of the spectral density function obtained from relaxation at low magnetic fields. High-resolution relaxometry and two-field NMR measurements of relaxation have, so far, only been based on the recording of one- or two-dimensional spectra, which provide insufficient resolution for challenging disordered proteins. Here, we introduce a 3D-HNCO-based two-field NMR experiment for measurements of protein backbone \(^{15}\hbox {N}\) amide longitudinal relaxation rates. The experiment provides accurate longitudinal relaxation rates at low field (0.33 T in our case) preserving the resolution and sensitivity typical for high-field NMR spectroscopy. Radiofrequency pulses applied on six different radiofrequency channels are used to manipulate the spin system at both fields. The experiment was demonstrated on the C-terminal domain of \(\delta\) subunit of RNA polymerase from Bacillus subtilis, a protein with highly repetitive amino-acid sequence and very low dispersion of backbone chemical shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abyzov A, Salvi N, Schneider R, Maurin D, Ruigrok RWH, Jensen MR, Blackledge M (2016) Identification of dynamic modes in an intrinsically disordered protein using temperature-dependent NMR relaxation. J Am Chem Soc 138(19):6240–6251

    Article  Google Scholar 

  • Burum D, Ernst R (1980) Net polarization transfer via a J-ordered state for signal enhancement of low-sensitivity nuclei. J Magn Reson 39(1):163–168

    ADS  Google Scholar 

  • Charlier C, Khan SN, Marquardsen T, Pelupessy P, Reiss V, Sakellariou D, Bodenhausen G, Engelke F, Ferrage F (2013) Nanosecond time scale motions in proteins revealed by high-resolution NMR relaxometry. J Am Chem Soc 135(49):18665–18672

    Article  Google Scholar 

  • Clarkson MW, Lei M, Eisenmesser EZ, Labeikovsky W, Redfield A, Kern D (2009) Mesodynamics in the SARS nucleocapsid measured by NMR field cycling. J Biomol NMR 45(1–2):217–225

    Article  Google Scholar 

  • Coggins BE, Werner-Allen JW, Yan A, Zhou P (2012) Rapid protein global fold determination using ultrasparse sampling, high-dynamic range artifact suppression, and time-shared NOESY. J Am Chem Soc 134(45):18619–18630

    Article  Google Scholar 

  • Cousin SF, Charlier C, Kadeřávek P, Marquardsen T, Tyburn JM, Bovier PA, Ulzega S, Speck T, Wilhelm D, Engelke F, Maas W, Sakellariou D, Bodenhausen G, Pelupessy P, Ferrage F (2016a) High-resolution two-field nuclear magnetic resonance spectroscopy. Phys Chem Chem Phys 18(48):33187–33194

    Article  Google Scholar 

  • Cousin SF, Kadeřávek P, Haddou B, Charlier C, Marquardsen T, Tyburn JM, Bovier PA, Engelke F, Maas W, Bodenhausen G, Pelupessy P, Ferrage F (2016b) Recovering invisible signals by two-field NMR spectroscopy. Angew Chem Int Ed 55(34):9886–9889

    Article  Google Scholar 

  • Cousin SF, Kadeřávek P, Bolik-Coulon N, Ferrage F (2018) Determination of protein ps-ns motions by high-resolution relaxometry. Methods Mol Biol 1688:169–203

    Article  Google Scholar 

  • Cousin SF, Kadeřávek P, Bolik-Coulon N, Gu Y, Charlier C, Garber L, Bruschweiler-Li L, Marquardsen T, Tyburn JM, Bruschweiler R, Ferrage F (2018) Time-resolved protein side-chain motions unraveled by high-resolution relaxometry and molecular dynamics simulations. J Am Chem Soc 140(41):13456–13465

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister G, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • DeSaro F, Woody A, Helmann J (1995) Structural-analysis of the Bacillus-subtilis delta-factor: a protein polyanion which displaces RNA from RNA-polymerase. J Mol Biol 252(2):189–202

    Article  Google Scholar 

  • Eaton JW, Bateman D, Hauberg S, Wehbring R (2014) GNU Octave version 3.8.1 manual: a high-level interactive language for numerical computations. CreateSpace independent publishing platform. ISBN 1441413006

  • Emsley L, Bodenhausen G (1990) Gaussian pulse cascades: new analytical functions for rectangular selective inversion and in-phase excitation in NMR. Chem Phys Lett 165(6):469–476

    Article  ADS  Google Scholar 

  • Ferrage F (2012) Protein dynamics by \(^{15}\text{ N }\) nuclear magnetic relaxation. Methods Mol Biol 831:141–163

    Article  Google Scholar 

  • Ghose R (2000) Average Liouvillian theory in nuclear magnetic resonance: principles, properties, and applications. Concepts Magn Reson 12(3):152–172

    Article  Google Scholar 

  • Gill ML, Byrd RA, Palmer AG (2016) Dynamics of GCN4 facilitate DNA interaction: a model-free analysis of an intrinsically disordered region. Phys Chem Chem Phys 18(8):5839–5849

    Article  Google Scholar 

  • Grzesiek S, Bax A (1993) Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR 3:185–204

    Google Scholar 

  • Hall P (1988) Theoretical comparison of bootstrap confidence intervals. Ann Stat 16:1–50

    Article  MathSciNet  MATH  Google Scholar 

  • Kadeřávek P, Bolik-Coulon N, Cousin SF, Marquardsen T, Tyburn JM, Dumez JN, Ferrage F (2019) Protein dynamics from accurate low-field site-specific longitudinal and transverse nuclear spin relaxation. J Phys Chem Lett 101(19):5917–5922

    Article  Google Scholar 

  • Kadeřávek P, Zapletal V, Rabatinová A, Krasný L, Sklenář V, Žídek L (2014) Spectral density mapping protocols for analysis of molecular motions in disordered proteins. J Biomol NMR 58(3):193–207

    Article  Google Scholar 

  • Kazimierczuk K, Zawadzka A, Kozminski W (2008) Optimization of random time domain sampling in multidimensional NMR. J Magn Reson 192(1):123–130

    Article  ADS  Google Scholar 

  • Khan SN, Charlier C, Augustyniak R, Salvi N, Dejean V, Bodenhausen G, Lequin O, Pelupessy P, Ferrage F (2015) Distribution of pico- and nanosecond motions in disordered proteins from nuclear spin relaxation. Biophys J 109(5):988–999

    Article  Google Scholar 

  • Kroenke CD, Loria JP, Lee LK, Rance M, Palmer AG (1998) Longitudinal and transverse \(^{1}\text{ H }\)-\(^{15}\text{ N }\) dipolar \(^{15}\text{ N }\) chemical shift anisotropy relaxation interference: unambiguous determination of rotational diffusion tensors and chemical exchange effects in biological macromolecules. J Am Chem Soc 120(31):7905–7915

    Article  Google Scholar 

  • Kubáň V, Srb P, Stegnerová H, Padrta P, Zachrdla M, Jaseňáková Z, Šanderová H, Vítovská D, Krásný L, Koval T, Dohnálek J, Ziemska-Legicka J, Grynberg M, Jarnot P, Gruca A, Jensen MR, Blackledge M, Žídek L (2019) Quantitative conformational analysis of functionally important electrostatic interactions in the intrinsically disordered region of delta subunit of bacterial RNA polymerase. J Am Chem Soc 141(42):16817–16828

    Article  Google Scholar 

  • Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31(8):1325–1327

    Article  Google Scholar 

  • Levitt MH, Dibari L (1992) Steady-state in magnetic-resonance pulse experiments. Phys Rev Lett 69(21):3124–3127

    Article  ADS  Google Scholar 

  • Linnet TE, Teilum K (2016) Non-uniform sampling of NMR relaxation data. J Biomol NMR 64:165–173

    Article  Google Scholar 

  • Mayzel M, Ahlner A, Lundström P, Orekhov VY (2017) Measurement of protein backbone (CO)-C-13 and N-15 relaxation dispersion at high resolution. J Biomol NMR 69(1):1–12

    Article  Google Scholar 

  • Mobli M, Hoch JC (2014) Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR. Prog Nucl Magn Res Spectrosc 83:21–41

    Article  Google Scholar 

  • Morris G, Freeman R (1979) Enhancement of nuclear magnetic-resonance signals by polarization transfer. J Am Chem Soc 101(3):760–762

    Article  Google Scholar 

  • Motáčková V, Šanderová H, Žídek L, Nováček J, Padrta P, Švenková A, Korelusová J, Jonák J, Krásný L, Sklenář V (2010) Solution structure of the N-terminal domain of Bacillus subtilis \(\delta\) subunit of RNA polymerase and its classification based on structural homologs. Proteins 78(7):1807–1810

    Google Scholar 

  • Orekhov VY, Jaravine VA (2011) Analysis of non-uniformly sampled spectra with multi-dimensional decomposition. Prog Nucl Magn Res Spectrosc 59(3):271–292

    Article  Google Scholar 

  • Palmer A, Cavanagh J, Wright P, Rance M (1991) Sensitivity improvement in proton-detected 2-dimensional heteronuclear correlation NMR-spectroscopy. J Magn Reson 93(1):151–170

    ADS  Google Scholar 

  • Papoušková V, Kadeřávek P, Otrusinová O, Šanderová H, Nováček J, Krásný L, Sklenář V, Žídek L (2013) Structural study of the partially disordered full-length delta subunit of RNA polymerase from Bacillus subtilis. ChemBioChem 14(14):1772–1779

    Article  Google Scholar 

  • Rabatinová A, Matějíčková JJ, Korelusová J, Sojka L, Papoušková V, Sklenář V, Žídek L, Krásný L (2013) The delta subunit of RNA polymerase is required for rapid changes in gene expression and competitive fitness of the cell. J Bacteriol 195(11):2603–2611

    Article  Google Scholar 

  • Redfield AG (2012) High-resolution NMR field-cycling device for full-range relaxation and structural studies of biopolymers on a shared commercial instrument. J Biomol NMR 52(2):159–177

    Article  Google Scholar 

  • Shaka A, Keeler J, Frenkiel T, Freeman R (1983) An improved sequence for broad-band decoupling - WALTZ-16. J Magn Reson 52(2):335–338

    ADS  Google Scholar 

  • Shaka A, Barker P, Freeman R (1985) Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson 64(3):547–552

    ADS  Google Scholar 

  • Shchukina A, Urbańnczyk M, Kasprzak P, Kazimierczuk K (2018) Alternative data processing techniques for serial NMRexperiments. Concepts Magn Reson Part A 46A(e21429):1–11

    Google Scholar 

  • Srb P, Nováček J, Kadeřávek P, Rabatinová A, Krásný L, Žídková J, Bobalová J, Sklenář V, Žídek L (2017) Triple resonance NMR relaxation experiments for studies of intrinsically disordered proteins. J Biomol NMR 69(3):133–146

    Article  Google Scholar 

  • States DJ, Haberkorn RA, Ruben DJ (1982) A two-dimensional nuclear overhauser experiment with pure absorption phase in four quadrants. J Magn Reson 48(2):286–292

    ADS  Google Scholar 

  • Stetz MA, Wand AJ (2016) Accurate determination of rates from non-uniformly sampled relaxation data. J Biomol NMR 65(3–4):157–170

    Article  Google Scholar 

  • Tibshirani R (1988) Variance stabilization and the bootstrap. Biometrika 75(3):433–444

    Article  MathSciNet  MATH  Google Scholar 

  • Ying J, Delaglio F, Torchia DA, Bax A (2017) Sparse multidimensional iterative lineshape-enhanced (SMILE) reconstruction of both non-uniformly sampled and conventional NMR data. J Biomol NMR 68(2, SI):101–118

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Czech Science Foundation Grant Nos. GA18-04197Y and ANR-18-CE29-0003 provided by agence nationale de la recherche. Short scientific mission of PK to perform measurements at the two-field NMR spectrometer was supported by STSM Grant from the EURELAX COST Action CA15209.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fabien Ferrage or Pavel Kadeřávek.

Ethics declarations

Conflict of interest

Thorsten Marquardsen and Jean-Max Tyburn are employees of the Bruker BioSpin. The authors declare no other conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaseňáková, Z., Zapletal, V., Padrta, P. et al. Boosting the resolution of low-field \(^{15}\hbox {N}\) relaxation experiments on intrinsically disordered proteins with triple-resonance NMR. J Biomol NMR 74, 139–145 (2020). https://doi.org/10.1007/s10858-019-00298-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-019-00298-6

Keywords

Navigation