Skip to main content

Advertisement

Log in

Rotary-jet spun polycaprolactone/nano-hydroxyapatite scaffolds modified by simulated body fluid influenced the flexural mode of the neoformed bone

  • Tissue Engineering Constructs and Cell Substrates
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Polycaprolactone (PCL) is a biocompatible, biodegradable synthetic polymer which in combination with nanohydroxyapatite (nHAp) can give rise to a low cost, nontoxic bioactive product with excellent mechanical properties and slow degradation. Here we produced, characterized and evaluated in vivo the bone formation of PCL/nHAp scaffolds produced by the rotary jet spinning technique. The scaffolds produced were firstly soaked into simulated body fluid for 21 days to also obtain nHAp onto PCL/nHAp scaffolds. Afterwards, the scaffolds were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy and Raman spectroscopy. For in vivo experiments, 20 male Wistar rats were used and randomly divided in 4 experimental groups (n = 5). A critical defect of 3 mm in diameter was made in the tibia of the animals, which were filled with G1 control (clot); G2—PCL scaffold; G3—PCL/nHAp (5%) scaffold; G4—PCL/nHAp (20%) scaffold. All animals were euthanized 60 days after surgery, and the bone repair in the right tibiae were evaluated by radiographic analysis, histological analysis and histomorphometric analysis. While in the left tibias, the areas of bone repair were submitted to the flexural strength test. Radiographic and histomorphometric analyses no showed statistical difference in new bone formation between the groups, but in the three-point flexural tests, the PCL/nHAp (20%) scaffold positively influenced the flexural mode of the neoformed bone. These findings indicate that PCL/nHAp (20%) scaffold improve biomechanical properties of neoformed bone and could be used for bone medicine regenerative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Grabowski G, Cornett CA. Bone graft and bone graft substitutes in spine surgery: current concepts and controversies. JAAOS-J Am Acad Orthop Surg. 2013;21:51.

    Article  Google Scholar 

  2. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40:363.

    Article  Google Scholar 

  3. Chaudhury K, Kumar V, Kandasamy J, RoyChoudhury S. Regenerative nanomedicine: current perspectives and future directions. Int J Nanomed. 2014;9:4153. https://doi.org/10.2147/IJN.S45332.

    Article  Google Scholar 

  4. Mohammadi M, Mousavi Shaegh SA, Alibolandi M, Ebrahimzadeh MH, Tamayol A, Jaafari MR, et al. Micro and nanotechnologies for bone regeneration: Recent advances and emerging designs. J Controlled Release. 2018;274:35. https://doi.org/10.1016/j.jconrel.2018.01.032.

    Article  CAS  Google Scholar 

  5. Rezvani Z, Venugopal JR, Urbanska AM, Mills DK, Ramakrishna S, Mozafari M. A bird’s eye view on the use of electrospun nanofibrous scaffolds for bone tissue engineering: Current state‐of‐the‐art, emerging directions and future trends. Nanomed: Nanotechnol Biol Med. 2016;12:2181. https://doi.org/10.1016/j.nano.2016.05.014.

    Article  CAS  Google Scholar 

  6. O’brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14:88.

    Article  Google Scholar 

  7. Giannona S, Firkowska I, Rojas-Chapana J, Giersig M. Vertically aligned carbon nanotubes as cytocompatible material for enhanced adhesion and proliferation of osteoblast-like cells. J Nanosci Nanotechnol. 2007;7:1679.

    Article  CAS  Google Scholar 

  8. Tabata Y. Biomaterial technology for tissue engineering applications. J R Soc interface. 2009;6:S311.

    Article  CAS  Google Scholar 

  9. Kim S-S, Park MS, Jeon O, Choi CY, Kim B-S. Poly (lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:1399.

    Article  CAS  Google Scholar 

  10. Cristofaro F, Gigli M, Bloise N, Chen H, Bruni G, Munari A, et al. Influence of the nanofiber chemistry and orientation of biodegradable poly (butylene succinate)-based scaffolds on osteoblast differentiation for bone tissue regeneration. Nanoscale. 2018;10:8689

    Article  CAS  Google Scholar 

  11. Dayer R, Badoud I, Rizzoli R, Ammann P. Defective Implant Osseointegration Under Protein Undernutrition: Prevention by PTH or Pamidronate. J Bone Miner Res. 2007;22:1526. https://doi.org/10.1359/jbmr.070610.

    Article  Google Scholar 

  12. Aspenberg P, Genant HK, Johansson T, Nino AJ, See K, Krohn K, et al. Teriparatide for acceleration of fracture repair in humans: A prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res. 2010;25:404. https://doi.org/10.1359/jbmr.090731.

    Article  CAS  Google Scholar 

  13. Sansone RA, Sansone LA. SSRIs: bad to the bone? Innov Clin Neurosci. 2012;9:42.

    Google Scholar 

  14. Mountziaris PM, Mikos AG. Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng Part B: Rev. 2008;14:179.

    Article  CAS  Google Scholar 

  15. Kim H-W, Knowles JC, Kim H-E. Hydroxyapatite/poly(ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials. 2004;25:1279. https://doi.org/10.1016/j.biomaterials.2003.07.003.

    Article  CAS  Google Scholar 

  16. Dwivedi R, Kumar S, Pandey R, Mahajan A, Nandana D, Katti DS, et al. Polycaprolactone as biomaterial for bone scaffolds: review of literature. J Oral Biol Craniofacial Res. 2020;10:381

    Article  Google Scholar 

  17. Ganesh N, Ashokan A, Rajeshkannan R, Chennazhi K, Koyakutty M, Nair SV. Magnetic resonance functional nano-hydroxyapatite incorporated poly (caprolactone) composite scaffolds for in situ monitoring of bone tissue regeneration by MRI. Tissue Eng Part A. 2014;20:2783.

    Article  CAS  Google Scholar 

  18. Koutsopoulos S. Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res. 2002;62:600. https://doi.org/10.1002/jbm.10280.

    Article  CAS  Google Scholar 

  19. de Castro JG, Rodrigues BVM, Ricci R, Costa MM, Ribeiro AFC, Marciano FR, et al. Designing a novel nanocomposite for bone tissue engineering using electrospun conductive PBAT/polypyrrole as a scaffold to direct nanohydroxyapatite electrodeposition. RSC Adv. 2016;6:32615. https://doi.org/10.1039/C6RA00889E.

    Article  CAS  Google Scholar 

  20. Siqueira IAWB, Corat MAF, Cavalcanti BdN, et al. In vitro and in vivo studies of novel poly(d,l-lactic acid), superhydrophilic carbon nanotubes, and nanohydroxyapatite scaffolds for bone regeneration. ACS Appl Mater Interfaces. 2015;7:9385. https://doi.org/10.1021/acsami.5b01066.

    Article  CAS  Google Scholar 

  21. Rogalski JJ, Bastiaansen CW, Peijs T. Rotary jet spinning review–a potential high yield future for polymer nanofibers. Nanocomposites. 2017;3:97.

    Article  Google Scholar 

  22. Rogalski J, Bastiaansen C, Peijs T. PA6 nanofibre production: a comparison between rotary jet spinning and electrospinning. Fibers. 2018;6:37.

    Article  Google Scholar 

  23. Badrossamay MR, McIlwee HA, Goss JA, Parker KK. Nanofiber assembly by rotary jet-spinning. Nano Lett. 2010;10:2257.

    Article  CAS  Google Scholar 

  24. Baji A, Mai Y-W, Wong S-C, Abtahi M, Chen P. Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos Sci Technol. 2010;70:703.

    Article  CAS  Google Scholar 

  25. Ramakrishna S. An introduction to electrospinning and nanofibers. Singapore: World Scientific; 2005.

  26. Badrossamay MR, Balachandran K, Capulli AK, Golecki HM, Agarwal A, Goss JA, et al. Engineering hybrid polymer-protein super-aligned nanofibers via rotary jet spinning. Biomaterials. 2014;35:3188. https://doi.org/10.1016/j.biomaterials.2013.12.072.

    Article  CAS  Google Scholar 

  27. Golecki HM, Yuan H, Glavin C, Potter B, Badrossamay MR, Goss JA, et al. Effect of solvent evaporation on fiber morphology in rotary jet spinning. Langmuir. 2014;30:13369. https://doi.org/10.1021/la5023104.

    Article  CAS  Google Scholar 

  28. Basile MA, d’Ayala GG, Malinconico M, Laurienzo P, Coudane J, Nottelet B, et al. Functionalized PCL/HA nanocomposites as microporous membranes for bone regeneration. Mater Sci Eng C-Mater Biol Appl. 2015;48:457. https://doi.org/10.1016/j.msec.2014.12.019.

    Article  CAS  Google Scholar 

  29. Son S-R, Linh N-TB, Yang H-M, Lee B-T. In vitro and in vivo evaluation of electrospun PCL/PMMA fibrous scaffolds for bone regeneration. Sci Technol Adv Mater. 2013;14:015009.

    Article  Google Scholar 

  30. Andrade TM, Mello DCR, Elias CMV, Abdala JMA, Silva E, Vasconcellos LMR, et al. In vitro and in vivo evaluation of rotary-jet-spun poly(ɛ-caprolactone) with high loading of nano-hydroxyapatite. J Mater Sci: Mater Med. 2019;30:19. https://doi.org/10.1007/s10856-019-6222-1.

    Article  CAS  Google Scholar 

  31. Barrere F, van Blitterswijk CA, de Groot K, Layrolle P. Influence of ionic strength and carbonate on the Ca-P coating formation from SBF×5 solution. Biomaterials. 2002;23:1921. https://doi.org/10.1016/S0142-9612(01)00318-0.

    Article  Google Scholar 

  32. Silva E, Pereira VF, Vasconcellos LMR, Oliveira FE, Brandão AAH. Quality of bone repair in ovariectomized rats with bone lesions treated with phytotherapic and homeopathic Arnica montana. Braz Dent Sci. 2017;20:25.

    Article  Google Scholar 

  33. Vida TA, Motta AC, Santos AR Jr, Cardoso GBC, Brito CCD, Zavaglia CADC. Fibrous PCL/PLLA scaffolds obtained by rotary jet spinning and electrospinning. Mater Res. 2017;20:910.

    Article  Google Scholar 

  34. Meyer RA Jr, Tsahakis PJ, Martin DF, Banks DM, Harrow ME, Kiebzak GM. Age and ovariectomy impair both the normalization of mechanical properties and the accretion of mineral by the fracture callus in rats. J Orthop Res. 2001;19:428.

    Article  Google Scholar 

  35. Oliveira FC, Carvalho JO, Gusmão SBS, Gonçalves LS, Soares Mendes LM, Freitas SAP, et al. High loads of nano-hydroxyapatite/graphene nanoribbon composites guided bone regeneration using an osteoporotic animal model. Int J Nanomed. 2019;14:865.

    Article  Google Scholar 

  36. Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE. Scaffold design for bone regeneration. J Nanosci Nanotechnol. 2014;14:15.

    Article  CAS  Google Scholar 

  37. Fan X, Ren H, Luo X, Wang P, Lv G, Yuan H, et al. Mechanics, degradability, bioactivity, in vitro, and in vivo biocompatibility evaluation of poly (amino acid)/hydroxyapatite/calcium sulfate composite for potential load-bearing bone repair. J Biomater Appl. 2016;30:1261.

    Article  Google Scholar 

  38. Brown EC, Perrien DS, Fletcher TW, Irby DJ, Aronson J, Gao GG, et al. Skeletal toxicity associated with chronic ethanol exposure in a rat model using total enteral nutrition. J Pharmacol Exp Ther. 2002;301:1132.

    Article  Google Scholar 

  39. Gürdal P, Akdeniz B. Comparison of two methods for radiometric evaluation of resin-based restorative materials. Dentomaxillofacial Radiol. 1998;27:236.

    Article  Google Scholar 

  40. Harikrishnan P, Islam H, Sivasamy A. Biocompatibility studies of nanoengineered polycaprolactone and nanohydroxyapatite scaffold for craniomaxillofacial bone regeneration. J Craniofacial Surg. 2019;30:265.

    Article  Google Scholar 

  41. Gao X, Song J, Ji P, Zhang X, Li X, Xu X, et al. Polydopamine-templated hydroxyapatite reinforced polycaprolactone composite nanofibers with enhanced cytocompatibility and osteogenesis for bone tissue engineering. ACS Appl Mater interfaces. 2016;8:3499.

    Article  Google Scholar 

  42. Buyuksungur S, Tanir TE, Buyuksungur A, Bektas EI, Kose GT, Yucel D, et al. 3D printed poly (ε-caprolactone) scaffolds modified with hydroxyapatite and poly (propylene fumarate) and their effects on the healing of rabbit femur defects. Biomater Sci. 2017;5:2144.

    Article  Google Scholar 

  43. Pramanik S, Ataollahi F, Pingguan-Murphy B, Oshkour AA, Osman NAA. In vitro study of surface modified poly (ethylene glycol)-impregnated sintered bovine bone scaffolds on human fibroblast cells. Sci Rep. 2015;5:9806.

    Article  CAS  Google Scholar 

  44. Chon C-S, Yun H-S, Kim HS, Ko C. Elastic modulus of osteoporotic mouse femur based on femoral head compression test. Appl Bionics Biomech. 2017;2017:7201769. https://doi.org/10.1155/2017/7201769.

    Article  Google Scholar 

  45. Vicente-Rodríguez G, Urzanqui A, Mesana MI, Ortega FB, Ruiz JR, Ezquerra J, et al. Physical fitness effect on bone mass is mediated by the independent association between lean mass and bone mass through adolescence: a cross-sectional study. J Bone Miner Metab. 2008;26:288. https://doi.org/10.1007/s00774-007-0818-0.

    Article  Google Scholar 

Download references

Author contributions

All authors contributed to the design of the study, write and discussion of the manuscript. JMAA and TMA produced the scaffolds. LMRV, GBM and JCR conducted the in vivo experiments and radiographic, histologic, histomorphometric and biomechanical analyzes. CMEV, SBSG and BCV characterized all produced scaffolds. LMRV, FRM, and AOL supervised all students. All authors read and approved the final manuscript.

Funding

This work was supported by the National Council for Scientific and Technological Development (CNPq, #303752/2017-3 and #404683/2018-5 to AOL and #304133/2017-5 and #424163/2016-0 to FRM) and FAPESP (2016/20820-0 to GBM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luana M. R. Vasconcellos or Anderson O. Lobo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasconcellos, L.M.R., Elias, C.d.M.V., Minhoto, G.B. et al. Rotary-jet spun polycaprolactone/nano-hydroxyapatite scaffolds modified by simulated body fluid influenced the flexural mode of the neoformed bone. J Mater Sci: Mater Med 31, 72 (2020). https://doi.org/10.1007/s10856-020-06403-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-020-06403-8

Navigation