Skip to main content
Log in

Electrophoretic processing of chitosan based composite scaffolds with Nb-doped bioactive glass for bone tissue regeneration

  • Tissue Engineering Constructs and Cell Substrates
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bioactive glasses (BGs), due to their ability to influence osteogenic cell functions, have become attractive materials to improve loaded and unloaded bone regeneration. BG systems can be easily doped with several metallic ions (e.g., Ag, Sr, Cu, Nb) in order to confer antibacterial properties. In particular, Nb, when compared with other metal ions, has been reported to be less cytotoxic and possess the ability to enhance mineralization process in human osteoblast populations. In this study, we co-deposited, through one-pot electrophoretic deposition (EPD), chitosan (CS), gelatin (GE) and a modified BG containing Nb to obtain substrates with antibacterial activity for unloaded bone regeneration. Self-standing composite scaffolds, with a defined porosity (15–90 μm) and homogeneous dispersion of BGs were obtained. TGA analysis revealed a BG loading of about 10% in the obtained scaffolds. The apatite formation ability of the scaffolds was evaluated in vitro in simulated body fluid (SBF). SEM observations, XRD and FT-IR spectra showed a slow (21–28 days) yet effective nucleation of CaP species on BGs. In particular, FT-IR peak around 603 cm−1 and XRD peak at 2θ = 32°, denoted the formation of a mineral phase after SBF immersion. In vitro biological investigation revealed that the release of Nb from composite scaffolds had no cytotoxic effects. Interestingly, BG-doped Nb scaffolds displayed antibacterial properties, reducing S. lutea and E. coli growth of ≈60% and ≈50%, respectively. Altogether, the obtained results disclose the produced composite scaffolds as promising materials with inherent antibacterial activity for bone tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pina S, Oliveira JM, Reis RL. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater. 2015;27:1143–69.

    Article  CAS  Google Scholar 

  2. Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–74.

    Article  CAS  Google Scholar 

  3. Gerhardt L-C, Boccaccini AR. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials. 2010;3:3867–910.

    Article  CAS  Google Scholar 

  4. Hoppe A, Mouriño V, Boccaccini AR. Therapeutic inorganic ions in bioactive glasses to enhance bone formation and beyond. Biomater Sci. 2013;1:254–6.

    Article  CAS  Google Scholar 

  5. El-Kady AM, Ali AF, Rizk RA, Ahmed MM. Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles. Ceram Int. 2012;38:177–88.

    Article  CAS  Google Scholar 

  6. Rehman MAU, Munawar MA, Schubert DW, Boccaccini AR. Electrophoretic deposition of chitosan/gelatin/bioactive glass composite coatings on 316L stainless steel: a design of experiment study. Surf Coatings Technol. 2019;358:976–86. https://doi.org/10.1016/j.surfcoat.2018.12.013.

    Article  CAS  Google Scholar 

  7. Tamai M, Isama K, Nakaoka R, Tsuchiya T. Synthesis of a novel b-tricalcium phosphate/hydroxyapatite biphasic calcium phosphate containing niobium ions and evaluation of its osteogenic properties. J Artif Organs. 2007;10:22–8.

    Article  CAS  Google Scholar 

  8. Obata A, Takahashi Y, Miyajima T, Ueda K, Narushima T, Kasuga T. Effects of niobium ions released from calcium phosphate invert glasses containing Nb 2O 5 on osteoblast-like cell functions. ACS Appl Mater Interfaces. 2012;4:5684–90.

    Article  CAS  Google Scholar 

  9. Campiglio CE, Negrini NC, Farè S, Draghi L. Cross-linking strategies for electrospun gelatin scaffolds Materials 2019;12(15), art. no. 2476. https://doi.org/10.3390/ma12152476.

    Article  CAS  Google Scholar 

  10. Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol. 2010;144:51–63.

    Article  CAS  Google Scholar 

  11. Vaz JM, Pezzoli D, Chevallier P, Campelo CS, Candiani G, Mantovani D. Antibacterial coatings based on chitosan for pharmaceutical and biomedical applications. Curr Pharm Des. 2018;24:866–85. http://www.eurekaselect.com/159920/article.

    Article  CAS  Google Scholar 

  12. Avcu E, Baştan FE, Abdullah HZ, Rehman MAU, Avcu YY, Boccaccini AR. Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: a review. Prog Mater Sci. 2019;103:69–108. https://linkinghub.elsevier.com/retrieve/pii/S0079642519300015.

    Article  CAS  Google Scholar 

  13. Zhang Z, Cheng X, Yao Y, Luo J, Tang Q, Wu H, et al. Electrophoretic deposition of chitosan/gelatin coatings with controlled porous surface topography to enhance initial osteoblast adhesive responses. J Mater Chem B. 2016;4:7584–95.

    Article  CAS  Google Scholar 

  14. Estrada-Cabrera E, Torres-Ferrer LR, Aztatzi-Aguilar OG, De Vizcaya-Ruiz A, Meraz-Rios MA, Zarate-Triviño DG, et al. Chitosan-bioglass coatings on partially nanostructured anodized Ti-6Al-4V alloy for biomedical applications. Surf Coatings Technol. 2019;375:468–76.

    Article  CAS  Google Scholar 

  15. Ghalayani EA, Soleimanzade M, Campiglio CE, Federici A, Altomare L, Draghi L, et al. Hierarchical microchannel architecture in chitosan/bioactive glass scaffolds via electrophoretic deposition positive‐replica. J Biomed Mater Res Part A. 2019;107:1455–65. https://onlinelibrary.wiley.com/doi/abs/10.1002/jbm.a.36660.

  16. Jiang T, Zhang Z, Zhou Y, Liu Y, Wang Z, Tong H. et al. Surface functionalization of titanium with chitosan/gelatin via electrophoretic deposition: characterization and cell behavior. Biomacromolecules. 2010;11:1254–60. https://doi.org/10.1021/bm100050d.

    Article  CAS  Google Scholar 

  17. Lavenus S, Poxson DJ, Ogievetsky N, Dordick JS, Siegel RW. Stem cell behavior on tailored porous oxide surface coatings. Biomaterials. 2015;55:96–109.

    Article  CAS  Google Scholar 

  18. Miguez-Pacheco V, de Ligny D, Schmidt J, Detsch R, Boccaccini AR. Development and characterization of niobium-releasing silicate bioactive glasses for tissue engineering applications. J Eur Ceram Soc. 2018;38:871–6. https://linkinghub.elsevier.com/retrieve/pii/S0955221917305149.

    Article  CAS  Google Scholar 

  19. Bono N, Pennetta C, Sganappa A, Giupponi E, Sansone F, Volonterio A, et al. Design and synthesis of biologically active cationic amphiphiles built on the calix[4]arene scaffold. Int J Pharm. 2018;549:436–45. https://linkinghub.elsevier.com/retrieve/pii/S0378517318305969.

    Article  CAS  Google Scholar 

  20. Fernandes Queiroz M, Melo K, Sabry D, Sassaki G, Rocha H. Does the use of chitosan contribute to oxalate kidney stone formation. Mar Drugs. 2014;13:141–58. http://www.mdpi.com/1660-3397/13/1/141.

    Article  Google Scholar 

  21. Voron’ko NG, Derkach SR, Kuchina YA, Sokolan NI. The chitosan–gelatin (bio)polyelectrolyte complexes formation in an acidic medium. Carbohydr Polym. 2016;138:265–72. https://linkinghub.elsevier.com/retrieve/pii/S0144861715011492.

    Article  Google Scholar 

  22. Ochoa I, Sanz-Herrera JA, García-Aznar JM, Doblaré M, Yunos DM, Boccaccini AR. Permeability evaluation of 45S5 Bioglass®-based scaffolds for bone tissue engineering. J Biomech. 2009;42:257–60. https://linkinghub.elsevier.com/retrieve/pii/S0021929008005563.

    Article  Google Scholar 

  23. Matos MC, Ilharco LM, Almeida RM. The evolution of TEOS to silica gel and glass by vibrational spectroscopy. J Non Cryst Solids. 1992;147–148:232–7. https://linkinghub.elsevier.com/retrieve/pii/S0022309305806222.

    Article  CAS  Google Scholar 

  24. Flambard A, Videau JJ, Delevoye L, Cardinal T, Labrugère C, Rivero CA, et al. Structure and nonlinear optical properties of sodium–niobium phosphate glasses. J Non Cryst Solids. 2008;354:3540–7. https://linkinghub.elsevier.com/retrieve/pii/S0022309308001658.

    Article  CAS  Google Scholar 

  25. ElBatal H, Azooz M, Khalil EM, Soltan Monem A, Hamdy Y. Characterization of some bioglass–ceramics. Mater Chem Phys. 2003;80:599–609. https://linkinghub.elsevier.com/retrieve/pii/S0254058403000828.

    Article  CAS  Google Scholar 

  26. Pishbin F, Mouriño V, Flor S, Kreppel S, Salih V, Ryan MP. et al. Electrophoretic deposition of gentamicin-loaded bioactive glass/chitosan composite coatings for orthopaedic implants. ACS Appl Mater Interfaces. 2014;6:8796–806. https://doi.org/10.1021/am5014166.

    Article  CAS  Google Scholar 

  27. Rezaei Y, Moztarzadeh F, Shahabi S, Tahriri M. Synthesis, characterization, and in vitro bioactivity of sol-gel-derived SiO 2 –CaO–P 2 O 5 –MgO-SrO bioactive glass. Synth React Inorg, Met Nano-Metal Chem. 2014;44:692–701. https://doi.org/10.1080/15533174.2013.783869.

    Article  CAS  Google Scholar 

  28. Abruzzo A, Bigucci F, Cerchiara T, Cruciani F, Vitali B, Luppi B. Mucoadhesive chitosan/gelatin films for buccal delivery of propranolol hydrochloride. Carbohydr Polym. 2012;87:581–8. https://linkinghub.elsevier.com/retrieve/pii/S014486171100703X.

    Article  CAS  Google Scholar 

  29. Aramwit P, Jaichawa N, Ratanavaraporn J, Srichana T. A comparative study of type A and type B gelatin nanoparticles as the controlled release carriers for different model compounds. Mater Express. 2015;5:241–8. https://doi.org/10.1166/mex.2015.1233.

    Article  CAS  Google Scholar 

  30. Popat A, Liu J, Lu J, Qiao GQ (Max), Zhang S. A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles. J Mater Chem. 2012;22:11173. http://xlink.rsc.org/?DOI=c2jm30501a.

  31. Cerrutti M, Greenspan D, Powers K. An analytical model for the dissolution of different particle size samples of Bioglass in TRIS-buffered solution. Biomaterials. 2005;26:4903–11. https://linkinghub.elsevier.com/retrieve/pii/S0142961205000384.

    Article  CAS  Google Scholar 

  32. Pishbin F, Simchi A, Ryan MP, Boccaccini AR. A study of the electrophoretic deposition of Bioglass® suspensions using the Taguchi experimental design approach. J Eur Ceram Soc. 2010;30:2963–70. https://linkinghub.elsevier.com/retrieve/pii/S0955221910001329.

    Article  CAS  Google Scholar 

  33. Maji K, Dasgupta S, Pramanik K, Bissoyi A. Preparation and evaluation of gelatin-chitosan-nanobioglass 3D porous scaffold for bone tissue engineering. Int J Biomater. 2016;2016:1–14. http://www.hindawi.com/journals/ijbm/2016/9825659/.

    Article  Google Scholar 

  34. Gentile P, Mattioli-Belmonte M, Chiono V, Ferretti C, Baino F, Tonda-Turo C. et al. Bioactive glass/polymer composite scaffolds mimicking bone tissue. J Biomed Mater Res Part A. 2012;100A:2654–67. https://doi.org/10.1002/jbm.a.34205.

    Article  CAS  Google Scholar 

  35. Peter M, Binulal NS, Nair SV, Selvamurugan N, Tamura H, Jayakumar R. Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J. 2010;158:353–61. https://linkinghub.elsevier.com/retrieve/pii/S1385894710000963.

    Article  CAS  Google Scholar 

  36. Han F, Dong Y, Su Z, Yin R, Song A, Li S. Preparation, characteristics and assessment of a novel gelatin–chitosan sponge scaffold as skin tissue engineering material. Int J Pharm. 2014;476:124–33. https://linkinghub.elsevier.com/retrieve/pii/S0378517314006917.

    Article  CAS  Google Scholar 

  37. Wan Y, Wu H, Cao X, Dalai S. Compressive mechanical properties and biodegradability of porous poly(caprolactone)/chitosan scaffolds. Polym Degrad Stab. 2008;93:1736–41. https://linkinghub.elsevier.com/retrieve/pii/S0141391008002607.

    Article  CAS  Google Scholar 

  38. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510. https://doi.org/10.1111/j.1151-2916.1991.tb07132.x.

    Article  CAS  Google Scholar 

  39. Mota J, Yu N, Caridade SG, Luz GM, Gomes ME, Reis RL, et al. Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration. Acta Biomater. 2012;8:4173–80. https://linkinghub.elsevier.com/retrieve/pii/S1742706112002978.

    Article  CAS  Google Scholar 

  40. Nadeem D, Kiamehr M, Yang X, Su B. Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering. Mater Sci Eng C. 2013;33:2669–78. https://linkinghub.elsevier.com/retrieve/pii/S0928493113001215.

    Article  CAS  Google Scholar 

  41. Pereira MM, Clark AE, Hench LL. Calcium phosphate formation on sol-gel-derived bioactive glassesin vitro. J Biomed Mater Res. 1994;28:693–8. https://doi.org/10.1002/jbm.820280606.

    Article  CAS  Google Scholar 

  42. Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003;24:4353–64. https://linkinghub.elsevier.com/retrieve/pii/S0142961203003399.

    Article  CAS  Google Scholar 

  43. Cheung R, Ng T, Wong J, Chan W. Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs. 2015;13:5156–86. http://www.mdpi.com/1660-3397/13/8/5156.

    Article  CAS  Google Scholar 

  44. Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol. 2010;2:a000414–a000414. https://doi.org/10.1101/cshperspect.a000414.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr Samira Tansaz and Dr Supachai Reakasame (Institute of Biomaterials, University of Erlangen-Nuremberg) are acknowledged for experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Altomare.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonetti, L., Altomare, L., Bono, N. et al. Electrophoretic processing of chitosan based composite scaffolds with Nb-doped bioactive glass for bone tissue regeneration. J Mater Sci: Mater Med 31, 43 (2020). https://doi.org/10.1007/s10856-020-06378-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-020-06378-6

Navigation