Skip to main content

Advertisement

Log in

Development of mussel-inspired 3D-printed poly (lactic acid) scaffold grafted with bone morphogenetic protein-2 for stimulating osteogenesis

  • S.I.: Biofabrication and Bioinks for Tissue Engineering
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

3D printing is a versatile technique widely applied in tissue engineering due to its ability to manufacture large quantities of scaffolds or constructs with various desired architectures. In this study, we demonstrated that poly (lactic acid) (PLA) scaffolds fabricated via fused deposition not only retained the original interconnected microporous architectures, the scaffolds also exhibited lower lactic acid dissolution as compared to the freeze-PLA scaffold. The 3D-printed scaffolds were then grafted with human bone morphogenetic protein-2 (BMP-2) via the actions of polydopamine (PDA) coatings. The loading and release rate of BMP-2 were monitored for a period of 35 days. Cellular behaviors and osteogenic activities of co-cultured human mesenchymal stem cells (hMSCs) were assessed to determine for efficacies of scaffolds. In addition, we demonstrated that our fabricated scaffolds were homogenously coated with PDA and well grafted with BMP-2 (219.1 ± 20.4 ng) when treated with 250 ng/mL of BMP-2 and 741.4 ± 127.3 ng when treated with 1000 ng/mL of BMP-2. This grafting enables BMP-2 to be released in a sustained profile. From the osteogenic assay, it was shown that the ALP activity and osteocalcin of hMSCs cultured on BMP-2/PDA/PLA were significantly higher when compared with PLA and PDA/PLA scaffolds. The methodology of PDA coating employed in this study can be used as a simple model to immobilize multiple growth factors onto different 3D-printed scaffold substrates. Therefore, there is potential for generation of scaffolds with different unique modifications with different capabilities in regulating physiochemical and biological properties for future applications in bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sarker B, Li W, Zheng K, Detsch R, Boccaccini AR. Designing porous bone tissue engineering scaffolds with enhanced mechanical properties from composite hydrogels composed of modified alginate, gelatin, and bioactive glass. ACS Biomater Sci Eng. 2016;2:2240–54.

    Article  CAS  Google Scholar 

  2. Tevlek A, Hosseinian P, Ogutcu C, Turk M, Aydin HM. Bi-layered constructs of poly(glycerol-sebacate)-β-tricalcium phosphate for bone-soft tissue interface applications. Mater Sci Eng C Mater Biol Appl. 2017;72:316–24.

    Article  CAS  Google Scholar 

  3. Tierney EG, Duffy GP, Hibbitts AJ, Cryan SA, O’Brien FJ. The development of non-viral gene-activated matrices for bone regeneration using polyethyleneimine (PEI) and collagen-based scaffolds. J Control Release. 2012;158:304–11.

    Article  CAS  Google Scholar 

  4. Bertol LS, Schabbach R, Loureiro Dos Santos LA. Different post-processing conditions for 3D bioprinted α-tricalcium phosphate scaffolds. J Mater Sci Mater Med. 2017;28:168.

    Article  Google Scholar 

  5. Chen YW, Wu YH, Shie MY. Characterization of decellularized extracellular matrix on 3d-printed ceramic scaffolds for promoted osteogenesis differentiation. Tissue Eng Part A. 2017;23:S46.

    Google Scholar 

  6. Hinton TJ, Hudson A, Pusch K, Lee A, Feinberg AW. 3D printing PDMS elastomer in a hydrophilic support bath via freeform reversible embedding. ACS Biomater Sci Eng. 2016;2:1781–6.

    Article  CAS  Google Scholar 

  7. Huang A, Jiang Y, Napiwocki B, Mi H, Peng X, Turng LS. Fabrication of poly(ε-caprolactone) tissue engineering scaffolds with fibrillated and interconnected pores utilizing microcellular injection molding and polymer leaching. RSC Adv. 2017;7:43432–44.

    Article  CAS  Google Scholar 

  8. Liu W, Wang D, Huang J, Wei Y, Xiong J, Zhu W, et al. Low-temperature deposition manufacturing: A novel and promising rapid prototyping technology for the fabrication of tissue-engineered scaffold. Mater Sci Eng C Mater Biol Appl. 2017;70:976–82.

    Article  CAS  Google Scholar 

  9. Wang Di, Wang Y, Wang J, Song C, Yang Y, Zhang Z, et al. Design and fabrication of a precision template for spine surgery using selective laser melting (SLM). Materials. 2016;9:608.

    Article  Google Scholar 

  10. Wu YH, Chiu YC, Lin YH, Ho CC, Shie MY, Chen YW. 3D-printed bioactive calcium silicate/poly-ε-caprolactone bioscaffolds modified with biomimetic extracellular matrices for bone regeneration. Int J Mol Sci. 2019;20:942.

    Article  CAS  Google Scholar 

  11. Kao CT, Lin CC, Chen YW, Yeh CH, Fang HY, Shie MY. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2015;56:165–73.

    Article  CAS  Google Scholar 

  12. Guduric V, Metz C, Siadous R, Bareille R, Levato R, Engel E, et al. Layer-by-layer bioassembly of cellularized polylactic acid porous membranes for bone tissue engineering. J Mater Sci Mater Med. 2017;28:78.

    Article  Google Scholar 

  13. Shim JH, Moon TS, Yun MJ, Jeon YC, Jeong CM, Cho DW, et al. Stimulation of healing within a rabbit calvarial defect by a PCL/PLGA scaffold blended with TCP using solid freeform fabrication technology. J Mater Sci Mater Med. 2012;23:2993–3002.

    Article  CAS  Google Scholar 

  14. Sun X, Cheng L, Zhao J, Jin R, Sun B, Shi Y, et al. bFGF-grafted electrospun fibrous scaffolds via poly(dopamine) for skin wound healing. J Mater Chem B. 2014;2:3636–45.

    Article  CAS  Google Scholar 

  15. Rajzer I, Menaszek E, Kwiatkowski R, Planell JA, Castaño O. Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2014;44:183–109.

    Article  CAS  Google Scholar 

  16. Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005;26:2603–10.

    Article  CAS  Google Scholar 

  17. Lin CC, Fu SJ, Lin YC, Yang IK, Gu Y. Chitosan-coated electrospun PLA fibers for rapid mineralization of calcium phosphate. Int J Biol Macromol. 2014;68:39–47.

    Article  CAS  Google Scholar 

  18. Li J, Xu Q, Teng B, Yu C, Song L, Lai YX, et al. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect. Acta Biomater. 2016;42:389–99.

    Article  CAS  Google Scholar 

  19. Kai D, Liow SS, Loh XJ. Biodegradable polymers for electrospinning: towards biomedical applications. Mater Sci Eng C Mater Biol Appl. 2014;45:659–70.

    Article  CAS  Google Scholar 

  20. Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318:426–30.

    Article  CAS  Google Scholar 

  21. Cheng YL, Chen YW, Wang K, Shie MY. Enhanced adhesion and differentiation of human mesenchymal stem cell inside apatite-mineralized/poly(dopamine)-coated poly(ε-caprolactone) scaffolds by stereolithography. J Mater Chem B. 2016;4:6307–15.

    Article  CAS  Google Scholar 

  22. Fu J, Quek KY, Chuah YJ, Lim CS, Fan C, Wang DA. The effects of gelatin–dopamine coating on polydimethylsiloxane substrates on pluripotency maintenance and myocardial differentiation of cultured mouse embryonic stem cells. J Mater Chem B. 2016;4:7961–73.

    Article  CAS  Google Scholar 

  23. Yu J, Lin YH, Yang L, Huang CC, Chen L, Wang WC, et al. Improved anticancer photothermal therapy using the bystander effect enhanced by antiarrhythmic peptide conjugated dopamine‐modified reduced graphene oxide nanocomposite. Adv Healthc Mater. 2017;6:1600804.

    Article  Google Scholar 

  24. Yeh CH, Chen YW, Shie MY, Fang HY. Poly(dopamine)-assisted immobilization of Xu Duan on 3D printed poly(lactic acid) scaffolds to up-regulate osteogenic and angiogenic markers of bone marrow stem cells. Materials. 2015;8:4299–315.

    Article  CAS  Google Scholar 

  25. Sun H, Ai M, Zhu S, Jia X, Cai Q, Yang X. Polylactide–hydroxyapatite nanocomposites with highly improved interfacial adhesion via mussel-inspired polydopamine surface modification. RSC Adv. 2015;5:95631–42.

    Article  CAS  Google Scholar 

  26. Wu C, Han P, Liu X, Xu M, Tian T, Chang J, et al. Mussel-inspired bioceramics with self-assembled Ca-P/polydopamine composite nanolayer: preparation, formation mechanism, improved cellular bioactivity and osteogenic differentiation of bone marrow stromal cells. Acta Biomater. 2014;10:428–38.

    Article  CAS  Google Scholar 

  27. Marie PJ, Miraoui H, Sévère N. FGF/FGFR signaling in bone formation: progress and perspectives. Growth Factors. 2012;30:117–23.

    Article  CAS  Google Scholar 

  28. Marie PJ. Fibroblast growth factor signaling controlling bone formation: an update. Gene. 2012;498:1–4.

    Article  CAS  Google Scholar 

  29. Bayat M, Shojaei S, Bahrami N, Mohamadnia A, Shojaei P, Bahrami N. Protein engineering of recombinant human bone morphogenetic protein 2 with higher interaction with Ca phosphate based scaffold used for osteogenesis. J Biomed Mater Res Part A. 2017;105:2799–805.

    Article  CAS  Google Scholar 

  30. Sánchez-Duffhues G, Hiepen C, Knaus P, Dijke ten P. Bone morphogenetic protein signaling in bone homeostasis. Bone. 2015;80:43–59.

    Article  Google Scholar 

  31. Wu Y, Lin ZYW, Wenger AC, Tam KC, Tang XS. 3D bioprinting of liver-mimetic construct with alginate/cellulose nanocrystal hybrid bioink. Bioprinting. 2018;9:1–6.

    Article  Google Scholar 

  32. Ma Y, Ji Y, Zhong T, Wan W, Yang Q, Li A, et al. Bioprinting-based PDLSC-ECM screening for in vivo repair of alveolar bone defect using cell-laden, injectable and photocrosslinkable hydrogels. ACS Biomater Sci Eng. 2017;3:3534–45.

    Article  CAS  Google Scholar 

  33. Kang KT, Kim SH, Son J, Lee YH, Chun HJ. Computational model-based probabilistic analysis of in vivo material properties for ligament stiffness using the laxity test and computed tomography. J Mater Sci Mater Med. 2016;27:183.

    Article  Google Scholar 

  34. Wongsupa N, Nuntanaranont T, Kamolmattayakul S, Thuaksuban N. Biological characteristic effects of human dental pulp stem cells on poly-ε-caprolactone-biphasic calcium phosphate fabricated scaffolds using modified melt stretching and multilayer deposition. J Mater Sci Mater Med. 2017;28:25.

    Article  Google Scholar 

  35. Popov A, Malferrari S, Kalaskar DM. 3D bioprinting for musculoskeletal applications. J 3D Print Med. 2017;1:191–211.

    Article  CAS  Google Scholar 

  36. Yu GZ, Chou D-T, Hong D, Roy A, Kumta PN. Biomimetic rotated lamellar plywood motifs by additive manufacturing of metal alloy scaffolds for bone tissue engineering. ACS Biomater Sci Eng. 2017;3:648–57.

    Article  CAS  Google Scholar 

  37. Rustom LE, Boudou T, Nemke BW, Lu Y, Hoelzle DJ, Markel MD, et al. Multiscale porosity directs bone regeneration in biphasic calcium phosphate scaffolds. ACS Biomater Sci Eng. 2016;3:2768–78.

    Article  Google Scholar 

  38. Link DP, van den Dolder J, van den Beucken JJ, Wolke JG, Mikos AG, Jansen JA. Bone response and mechanical strength of rabbit femoral defects filled with injectable CaP cements containing TGF-β1 loaded gelatin microparticles. Biomaterials. 2008;29:675–82.

    Article  CAS  Google Scholar 

  39. Sadat-Shojai M, Khorasani M-T, Jamshidi A. 3-Dimensional cell-laden nano-hydroxyapatite/protein hydrogels for bone regeneration applications. Mater Sci Eng C Mater Biol Appl. 2015;49:835–43.

    Article  CAS  Google Scholar 

  40. Mohammadkhah A, Marquardt LM, Sakiyama-Elbert SE, Day DE, Harkins AB. Fabrication and characterization of poly-(ε)-caprolactone and bioactive glass composites for tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2015;49:632–9.

    Article  CAS  Google Scholar 

  41. Ramp WK, Lenz LG, Kaysinger KK. Medium pH modulates matrix, mineral, and energy metabolism in cultured chick bones and osteoblast-like cells. Bone Miner. 1994;24:59–73.

    Article  CAS  Google Scholar 

  42. Chen YW, Shen YF, Ho CC, Yu J, Wu YH, Wang K, et al. Osteogenic and angiogenic potentials of the cell-laden hydrogel/mussel-inspired calcium silicate complex hierarchical porous scaffold fabricated by 3D bioprinting. Mater Sci Eng C Mater Biol Appl. 2018;91:679–87.

    Article  CAS  Google Scholar 

  43. Kao CT, Huang TH, Chen YJ, Hung CJ, Lin CC, Shie MY. Using calcium silicate to regulate the physicochemical and biological properties when using β-tricalcium phosphate as bone cement. Mater Sci Eng C Mater Biol Appl. 2014;43:126–34.

    Article  CAS  Google Scholar 

  44. Liu CH, Huang TH, Hung CJ, Lai WY, Kao CT, Shie MY. The synergistic effects of fibroblast growth factor-2 and mineral trioxide aggregate on an osteogenic accelerator in vitro. Int Endod J. 2014;47:843–53.

    Article  Google Scholar 

  45. Chien CY, Tsai WB. Poly(dopamine)-assisted immobilization of Arg-Gly-Asp peptides, hydroxyapatite, and bone morphogenic protein-2 on titanium to improve the osteogenesis of bone marrow stem cells. ACS Appl Mater Interfaces. 2013;5:6975–83.

    Article  CAS  Google Scholar 

  46. Lee SJ, Lee D, Yoon TR, Kim HK, Jo HH, Park JS, et al. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Acta Biomater. 2016;40:182–91.

    Article  CAS  Google Scholar 

  47. Shie MY, Ding SJ. Integrin binding and MAPK signal pathways in primary cell responses to surface chemistry of calcium silicate cements. Biomaterials. 2013;34:6589–606.

    Article  CAS  Google Scholar 

  48. Huang KH, Chen YW, Wang CY, Lin YH, Wu YH, Shie MY, et al. Enhanced capability of BMP-2-loaded mesoporous calcium silicate scaffolds to induce odontogenic differentiation of human dental pulp cells. J Endod. 2018;44:1677–85.

    Article  Google Scholar 

  49. Ku SH, Ryu J, Hong SK, Lee H, Park CB. General functionalization route for cell adhesion on non-wetting surfaces. Biomaterials. 2010;31:2535–41.

    Article  CAS  Google Scholar 

  50. Reddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol. 1998;16:247–52.

    Article  CAS  Google Scholar 

  51. Rodrigues EM, Gomes Cornélio AL, Soares-Costa A, Salles LP, Velayutham M, Rossa-Junior C, et al. An assessment of the overexpression of BMP-2 in transfected human osteoblast cells stimulated by mineral trioxide aggregate and biodentine. Int Endod J. 2017;50:e9–18.

    Article  Google Scholar 

  52. Zhang BJ, He L, Han ZW, Li XG, Zhi W, Zheng W, et al. Enhanced osteogenesis of multilayered pore-closed microsphere-immobilized hydroxyapatite scaffold via sequential delivery of osteogenic growth peptide and BMP-2. J Mater Chem B. 2017;5:8238–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge receipt grants from the Ministry of Science and Technology (MOST 105-2314-B-039-024), China Medical University (CMU 106-S-04, CMU 105-S-17) of Taiwan, and Tainan Municipal An-Nan Hospital-China Medical University (ANHRF104-09).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun-Hsu Yao or Ming-You Shie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, CH., Chen, YW., Kai-Xing Lee, A. et al. Development of mussel-inspired 3D-printed poly (lactic acid) scaffold grafted with bone morphogenetic protein-2 for stimulating osteogenesis. J Mater Sci: Mater Med 30, 78 (2019). https://doi.org/10.1007/s10856-019-6279-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6279-x

Navigation