Skip to main content
Log in

Hydroxyapatite/gelatin/gellan sponges as nanocomposite scaffolds for bone reconstruction

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of this work was the morphological, physicochemical, mechanical and biological characterization of a new composite system, based on gelatin, gellan and hydroxyapatite, and mimicking the composition of natural bone. Porous scaffolds were prepared by freeze–drying technique, under three different conditions of freezing. The morphological analysis showed a homogeneous porosity, with well interconnected pores, for the sample which underwent a more rapid freezing. The elastic modulus of the same sample was close to that of the natural bone. The presence of interactions among the components was demonstrated through the physicochemical investigation. In addition, the infrared chemical imaging analysis pointed out the similarity among the composite scaffold and the natural bone, in terms of chemical composition, homogeneity, molecular interactions and structural conformation. Preliminary biological characterization showed a good adhesion and proliferation of human mesenchymal stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Felsenberg D. Struktur und Funktion des Knochens. Pharm Unser Zeit. 2001;30:488–94.

    Article  CAS  Google Scholar 

  2. Gagliardi M, Barbani N, Cristallini C, Guerra GD, Krajewski A, Mazzocchi M. Composites between collagen and hydroxyapatite. In: Ravaglioli A, Krajewski A, editors. Proceedings of the 11th Meeting and Seminar on: Ceramics, Cells and Tissues. Annual Conferences. Nanotechnology for functional repair and regenerative medicine. The role of ceramics as in bulk and as coating. Faenza (I) October 2007. Roma: CNR; 2008. pp. 182–91. ISBN 88-8080-085-X; 978-88-8080-085-9.

  3. Barbani N, Rosellini E, Cristallini C, Guerra GD, Krajewski A, Mazzocchi M. Hydroxyapatite–collagen composites. Part I: can the decrease of the interactions between the two components be a physicochemical component of osteoporosis in aged bone? J Mater Sci Mater Med. 2011;22:637–46.

    Article  CAS  Google Scholar 

  4. Rosellini E, Barbani N, Cristallini C, Guerra GD. Cross-linked hydroxyapatite–collagen composites as biomaterials for tissue engineering. In: Ravaglioli A, Krajewski A, editors. Proceedings of the 12th Meeting and Seminar on: Ceramics, Cells and Tissues. Periodical Conferences. Surface-reactive biomaterials as scaffolds and coatings: interactions with cells and tissues. Faenza (I) May 2009. Roma: CNR; 2009, pp.197–204. ISBN 978-88-8080-111-5.

  5. Guerra GD. Composites of ceramics and glasses with synthetical and biological macromolecules. In: Ravaglioli A, Krajewski A, editors. Proceedings of the 12th Meeting and Seminar on: Ceramics, Cells and Tissues. Periodical Conferences. Surface-reactive biomaterials as scaffolds and coatings: interactions with cells and tissues. Faenza (I) May 2009. Roma: CNR; 2009, pp. 210–6. ISBN 978-88-8080-111-5.

  6. Guerra GD, Cristallini C, Rosellini E, Barbani N. A hydroxyapatite–collagen composite useful to make bioresorbable scaffolds for bone reconstruction. Adv Sci Technol. 2010;76:133–8.

    Article  CAS  Google Scholar 

  7. Neffe AT, Loebus A, Zaupa A, Stoetzel C, Müller FA, Lendlein A. Gelatin functionalization with tyrosine derived moieties to increase the interaction with hydroxyapatite fillers. Acta Biomater. 2011;7:1693–701.

    Article  CAS  Google Scholar 

  8. Almora-Barrios N, de Leeuw NH. A density functional theory study of the interaction of collagen peptides with hydroxyapatite surfaces. Langmuir. 2010;26:14535–42.

    Article  CAS  Google Scholar 

  9. Barbani N, Coluccio ML, Guerra GD, Krajewski A, Mazzocchi M, Ravaglioli A. Gellan gum–hydroxyapatite composites for the fabrication of scaffolds to be used in bone reconstruction. In: Ravaglioli A, Krajewski A, editors. Proceedings of the 9th Meeting and Seminar on: Ceramics, Cells and Tissues. Annual Conferences. Materials for Tissues Engineering, Chemistry and Microstructure: the Role for Ceramics. Faenza, (I) September–October 2004. Faenza: ISTEC-CNR; 2005, pp. 138–43. ISBN 88-8080-056-6.

  10. Pranoto Y, Lee CM, Park HJ. Characterizations of fish gelatin films added with gellan and κ-carrageenan. LWT. 2007;40:766–74.

    Article  CAS  Google Scholar 

  11. Folk JE, Finlayson JS. The ε-(γ-glutamyl)lysine crosslink and the catalytic role of transglutaminases. In: Anfisen CB, Edsall JT, Richards FM, editors. Advances in protein chemistry, vol. 31. New York: Academic Press; 1977. p. 1–133.

    Google Scholar 

  12. Chau DYS, Collighan RJ, Verderio EAM, Addy VL, Griffin M. The cellular response to transglutaminase-cross-linked collagen. Biomaterials. 2005;26:6518–29.

    Article  CAS  Google Scholar 

  13. Barbetta A, Massimi M, Conti Devirgiliis L, Dentini M. Enzymatic cross-linking versus radical polymerization in the preparation of gelatin polyHIPEs and their performance as scaffolds in the culture of hepatocytes. Biomacromolecules. 2006;7:3059–68.

    Article  CAS  Google Scholar 

  14. Barbetta A, Massimi M, Di Rosario B, Nardecchia S, De Colli M, Conti Devirgiliis L, Dentini M. Emulsion templated scaffolds that include gelatin and glycosaminoglycans. Biomacromolecules. 2008;9:2844–56.

    Article  CAS  Google Scholar 

  15. Bertoni F, Barbani N, Giusti P, Ciardelli G. Transglutaminase reactivity with gelatine: perspective applications in tissue engineering. Biotechnol Lett. 2006;28:697–702.

    Article  CAS  Google Scholar 

  16. Kim Y-J, Uyama H. Biocompatible hydrogel formation of gelatin from cold water fish via enzymatic networking. Polym J. 2007;39:1040–6.

    Article  CAS  Google Scholar 

  17. Crescenzi V, Francescangeli A, Taglienti A. New gelatin-based hydrogels via enzymatic networking. Biomacromolecules. 2002;3:1384–91.

    Article  CAS  Google Scholar 

  18. Vogt S, Larcher Y, Beer B, Wilke I, Schnabelrauch M. Fabrication of highly porous scaffold materials based on functionalized oligolactides and preliminary results on their use in bone tissue engineering. Eur Cells Mater. 2002;4:30–8.

    CAS  Google Scholar 

  19. Mangano C, Scarano A, Iezzi G, Orsini G, Perrotti V, Mangano F, Montini S, Piccirilli M, Piattelli A. Maxillary sinus augmentation using an engineered porous hydroxyapatite: a clinical, histological, and transmission electron microscopy study in man. J Oral Implantol. 2006;32:122–31.

    Article  Google Scholar 

  20. Kubisz L, Mielcarek S. Differential scanning calorimetry and temperature dependence of electric conductivity in studies on denaturation process of bone collagen. J Non Cryst Solids. 2005;351:2935–9.

    Article  CAS  Google Scholar 

  21. Persikov AV, Ramshaw JAM, Kirkpatrick A, Brodsky B. Amino acid propensities for the collagen triple-helix. Biochemistry. 2000;39:14960–7.

    Article  CAS  Google Scholar 

  22. Chandrasekaran R, Millane RP, Arnott S, Atkins EDT. The crystal structure of gellan. Carbohydr Res. 1988;175:1–15.

    Article  CAS  Google Scholar 

  23. Chandrasekaran R, Puigjaner LC, Joyce KL, Arnott S. Cation interactions in gellan: an X-ray study of the potassium salt. Carbohydr Res. 1988;181:23–40.

    Article  CAS  Google Scholar 

  24. Dentini M, Desideri P, Crescenzi V, Yuguchi Y, Urakawa H, Kajiwara K. Synthesis and physicochemical characterization of gellan gels. Macromolecules. 2001;34:1449–53.

    Article  CAS  Google Scholar 

  25. Ross-Murphy SB. Structure and rheology of gelatin gels: recent progress. Polymer. 1992;33:2622–7.

    Article  CAS  Google Scholar 

  26. Dong XN, Guo XE. The dependence of transversely isotropic elasticity of human femoral cortical bone on porosity. J Biomech. 2004;37:1281–7.

    Article  Google Scholar 

  27. Azami M, Samadikuchaksaraei A, Poursamar SA. Synthesis and characterization of a laminated hydroxyapatite/gelatin nanocomposite scaffold with controlled pore structure for bone tissue engineering. Int J Artif Organs. 2010;33:86–95.

    CAS  Google Scholar 

  28. Chang MC, Tanaka J. FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials. 2002;23:4811–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Niccoletta Barbani or Elisabetta Rosellini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbani, N., Guerra, G.D., Cristallini, C. et al. Hydroxyapatite/gelatin/gellan sponges as nanocomposite scaffolds for bone reconstruction. J Mater Sci: Mater Med 23, 51–61 (2012). https://doi.org/10.1007/s10856-011-4505-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4505-2

Keywords

Navigation