Skip to main content

Advertisement

Log in

Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The mechanical behaviour of polymer scaffolds plays a vital role in their successful use in bone tissue engineering. The present study utilised novel sintered polymer scaffolds prepared using temperature-sensitive poly(dl-lactic acid-co-glycolic acid)/poly(ethylene glycol) particles. The microstructure of these scaffolds was monitored under compressive strain by image-guided failure assessment (IGFA), which combined synchrotron radiation computed tomography (SR CT) and in situ micro-compression. Three-dimensional CT data sets of scaffolds subjected to a strain rate of 0.01%/s illustrated particle movement within the scaffolds with no deformation or cracking. When compressed using a higher strain rate of 0.02%/s particle movement was more pronounced and cracks between sintered particles were observed. The results from this study demonstrate that IGFA based on simultaneous SR CT imaging and micro-compression testing is a useful tool for assessing structural and mechanical scaffold properties, leading to further insight into structure–function relationships in scaffolds for bone tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mosekilde L. Age-related changes in vertebral trabecular bone architecture—assessed by a new method. Bone. 1988;9:247–50.

    Article  CAS  Google Scholar 

  2. Müller R, Hannan M, Smith SY, Bauss F. Intermittent ibandronate preserves bone quality and bone strength in the lumbar spine after 16 months of treatment in the ovariectomized cynomolgus monkey. J Bone Miner Res. 2004;19:1787–96.

    Article  Google Scholar 

  3. Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA. The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech. 1994;27:375–89.

    Article  CAS  Google Scholar 

  4. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.

    Article  CAS  Google Scholar 

  5. Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci. 2004;4:743–65.

    Article  CAS  Google Scholar 

  6. Jones JR, Lee PD, Hench LL. Heirarchical porous materials for tissue engineering. Philos Transact A Math Phys Eng Sci. 2006;364:263–81.

    Article  CAS  Google Scholar 

  7. Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part I. Tradit Factors. 2001;7:679–89.

    CAS  Google Scholar 

  8. Bignon A, Chouteau J, Chevalier J, Fantozzi G, Carret JP, Chavassieux P, Boivin G, Melin M, Hartmann D. Effect of micro- and macroporosity of bone substitutes on their mechanical properties and cellular response. J Mater Sci Mater Med. 2003;14:1089–97.

    Article  CAS  Google Scholar 

  9. Jin QM, Takita H, Kohgo T, Atsumi K, Itoh H, Kuboki Y. Effects of geometry of hydroxyapatite as a cell substratum in BMP-induced ectopic bone formation. J Biomed Mater Res A. 2000;51:491–9.

    Article  CAS  Google Scholar 

  10. Kaito T, Myoui A, Takaoka K, Saito N, Nishikawa M, Tamai N, Ohgushi H, Yoshikawa H. Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA/PEG/hydroxyapatite composite. Biomaterials. 2005;26:73–9.

    Article  CAS  Google Scholar 

  11. Marra KG, Szem JW, Kumta PN, DiMilla PA, Weiss LE. In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. J Biomed Mater Res. 1999;47:324–35.

    Article  CAS  Google Scholar 

  12. Babout L, Ludwig W, Maire E, Buffiere JY. Damage assessment in metallic structural materials using high resolution synchrotron X-ray tomography. Nucl Instrum Methods Phys Res, B Beam Interact Mater Atoms. 2003;200:303–7.

    Article  CAS  Google Scholar 

  13. Elliott JA, Windle AH, Hobdell JR, Eeckhaut G, Oldman RJ, Ludwig W, Boller E, Cloetens P, Baruchel J. In situ deformation of an open-cell flexible polyurethane foam characterised by 3D computed microtomography. J Mater Sci. 2002;37:1547–55.

    Article  CAS  Google Scholar 

  14. Müller R, Gerber SC, Hayes WC. Micro-compression: a novel technique for the non-destructive assessment of local bone failure. Technol Health Care. 1998;6:433–44.

    Google Scholar 

  15. Nazarian A, Müller R. Time-lapsed microstructural imaging of bone failure behaviour. J Biomech. 2004;37:55–65.

    Article  Google Scholar 

  16. Thurner PJ, Wyss P, Voide R, Stauber M, Stampanoni M, Sennhauser U, Müller R. Time-lapsed investigation of three-dimensional failure and damage accumulation in trabecular bone using synchrotron light. Bone. 2006;39:289–99.

    Article  CAS  Google Scholar 

  17. Voide R, Schneider P, Stauber M, Wyss P, Stampanoni M, Sennhauser U, van Lenthe GH, Müller R. Time-lapsed assessment of microcrack initiation and propagation in murine cortical bone at submicrometer resolution. Bone. 2009;45:164–73.

    Article  CAS  Google Scholar 

  18. Schneider P, Levchuk A, Müller R. Automated micro-compression device for dynamic image-guided failure assessment of bone ultrastructure and bone microdamage. Biomed Tech. 2010;55:8–10.

    Google Scholar 

  19. Coombes AG, Heckman JD. Gel casting of resorbable polymers 2. In vitro degradation of bone graft substitutes. Biomaterials. 1992;13:297–307.

    Article  CAS  Google Scholar 

  20. Howard D, Buttery LD, Shakesheff KM, Roberts SJ. Tissue engineering: strategies, stem cells and scaffolds. J Anat. 2008;213:66–72.

    Article  CAS  Google Scholar 

  21. Hamilton L, France RM, Shakesheff KM. Development of an injectable scaffold for application in regenerative medicine to deliver stem cells and growth factors. J Pharm Pharmacol. 2006;58:52–3.

    Google Scholar 

  22. Stampanoni M, Groso A, Isenegger A, Mikuljan G, Chen Q, Meister D, Lange M, Betemps R, Henein S, Abela R. TOMCAT: a beamline for tomographic microscopy and coherent radiology experiments. AIP Conf Proc. 2007;879:848–51.

    Article  CAS  Google Scholar 

  23. Misch CE, Qu Z, Bidez MW. Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J Oral Maxillofac Surg. 1999;57:700–6.

    Article  CAS  Google Scholar 

  24. Teo JC, Chui CK, Wang ZL, Ong SH, Yan CH, Wang SC, Wong HK, Teoh SH. Heterogenous meshing and biomechanical modelling of human spine. Med Eng Phys. 2007;29:277–90.

    Article  CAS  Google Scholar 

  25. Kopperdahl DL, Keaveny TM. Yield strain behaviour of trabecular bone. J Biomech. 1998;31:601–8.

    Article  CAS  Google Scholar 

  26. Charles-Harris M, del Valle S, Hentges E, Bleuet P, Lacroix D, Planell JA. Mechanical and structural characterisation of completely degradable polylactic acid/calcium phosphate glass scaffolds. Biomaterials. 2007;28:4429–38.

    Article  CAS  Google Scholar 

  27. Yue S, Lee PD, Poologasundarampillai G, Yao Z, Rockett P, Devlin AH, Mitchell CA, Konerding MA, Jones JR. Synchrotron X-ray microtomography for assessment of bone tissue scaffolds. J Mater Sci Mater Med. 2010;21:847–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study has benefited from research funding of the European Union’s access programme 20090893 at the SLS (Paul Scherrer Institut, Villigen, Switzerland) as well as from the European Union’s Seventh Framework Programme in the project Angioscaff NMP-LA-2008-214402. SR CT measurements were carried out at the TOMCAT beamline at the Swiss Light Source with assistance from Dr Julie Fife. The authors also acknowledge Dr Kathryn Stok for her help and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. V. Rahman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhillon, A., Schneider, P., Kuhn, G. et al. Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing. J Mater Sci: Mater Med 22, 2599–2605 (2011). https://doi.org/10.1007/s10856-011-4443-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4443-z

Keywords

Navigation