Skip to main content
Log in

Crystallographically engineered, hydrothermally crystallized hydroxyapatite films: an in vitro study of bioactivity

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the bioactivity of hydroxyapatite films composed of hexagonal single crystals that display \( \left\{ {10\bar{1}0} \right\} \) and {0001} crystallographic faces. The effect of engineered [0001] crystallographic orientation was investigated in parallel. Films were deposited by triethyl phosphate/ethylenediamine-tetraacetic acid doubly regulated hydrothermal crystallization on Ti6Al4V substrates (10, 14, 24 h). Bioactivity was investigated by analysis of MC3T3-E1 pre-osteoblast spreading using scanning electron microscopy and quantitative analysis of cell metabolic activity (Alamar BlueTM) (0–28 days). Scanning electron microscopy and X-ray diffraction were used to evaluate the ability of films to support the differentiation of MC3T3-E1 pre-osteoblasts into matrix-secreting, mineralizing osteoblasts. Results demonstrated that all films enabled MC3T3-E1 cells to spread, grow, and differentiate into matrix-secreting osteoblasts, which deposited biomineral that could not be removed after extraction of organic material. Differences in [0001] HA crystallographic orientation were not, however, found to significantly affect bioactivity. Based on these results, it is concluded that these hydrothermal hydroxyapatite films are non-toxic, bioactive, osteoconductive, and biomineral bonding. The lack of a relationship between reported hydroxyapatite crystallographic face specific protein adsorption and bulk HA bioactivity are discussed in terms of crystallographic texture, surface roughness, assay robustness, and competitive protein adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HA:

Hydroxyapatite

PS-HA:

Plasma sprayed hydroxyapatite

EDTA:

Ethylenediamine-tetraacetic acid, C10H16N2O8

TEP:

Triethyl phosphate, C6H15O4P

Ca-P:

Calcium-phosphate

XRD:

X-ray diffraction

FESEM:

Field emission scanning electron microscopy

TCP:

Tissue culture plastic

PDF:

Powder diffraction file

Ti6Al4V:

Alloyed titanium with 6 wt% aluminum and 4 wt% vanadium

(hkil):

Hexagonal crystallographic plane Miller indices

{hkil}:

Equivalent hexagonal crystallographic plane Miller indices

[uvtw]:

Hexagonal crystallographic direction

References

  1. Cheang P, Khor KA. Addressing processing problems associated with plasma spraying of hydroxyapatite coatings. Biomaterials. 1996;17(5):537–44.

    Article  CAS  PubMed  Google Scholar 

  2. Tsui YC, Doyle C, Clyne TW. Plasma sprayed hydroxyapatite coatings on titanium substrates. Part 1: mechanical properties and residual stress levels. Biomaterials. 1998;19(22):2015–29.

    Article  CAS  PubMed  Google Scholar 

  3. Sun L, et al. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. J Biomed Mater Res. 2001;58(5):570–92.

    Article  CAS  PubMed  Google Scholar 

  4. Porter AE, et al. Bone bonding to hydroxyapatite and titanium surfaces on femoral stems retrieved from human subjects at autopsy. Biomaterials. 2004;25(21):5199–208.

    Article  CAS  PubMed  Google Scholar 

  5. Browne M, Gregson PJ. Effect of mechanical surface pretreatment on metal ion release. Biomaterials. 2000;21(4):385–92.

    Article  CAS  PubMed  Google Scholar 

  6. Park E, et al. Interfacial characterization of plasma-spray coated calcium phosphate on Ti–6Al–4V. J Mater Sci Mater Med. 1998;9(11):643–9.

    Article  CAS  PubMed  Google Scholar 

  7. Filiaggi MJ, Coombs NA, Pilliar RM. Characterization of the interface in the plasma-sprayed HA coating/Ti–6Al–4V implant system. J Biomed Mater Res. 1991;25(10):1211–29.

    Article  CAS  PubMed  Google Scholar 

  8. Ji H, Ponton CB, Marquis PM. Microstructural characterization of hydroxyapatite coating on titanium. J Mater Sci Mater Med. 1992;3:283–7.

    Article  CAS  Google Scholar 

  9. Geesink RG. Osteoconductive coatings for total joint arthroplasty. Clin Orthop Relat Res. 2002;(395):53–65.

  10. LeGeros RZ, Craig RG. Strategies to affect bone remodeling: osteointegration. J Bone Miner Res. 1993;8(Suppl 2):S583–96.

    Article  PubMed  Google Scholar 

  11. Spivak JM, et al. A new canine model to evaluate the biological response of intramedullary bone to implant materials and surfaces. J Biomed Mater Res. 1990;24(9):1121–49.

    Article  CAS  PubMed  Google Scholar 

  12. Kangasniemi IM, et al. In vivo tensile testing of fluorapatite and hydroxylapatite plasma-sprayed coatings. J Biomed Mater Res. 1994;28(5):563–72.

    Article  CAS  PubMed  Google Scholar 

  13. Lin H, et al. Tensile tests of interface between bone and plasma-sprayed HA coating-titanium implant. J Biomed Mater Res. 1998;43(2):113–22.

    Article  CAS  PubMed  Google Scholar 

  14. Dalton JE, Cook SD. In vivo mechanical and histological characteristics of HA-coated implants vary with coating vendor. J Biomed Mater Res. 1995;29(2):239–45.

    Article  CAS  PubMed  Google Scholar 

  15. Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res. 1998;13(1):94–117.

    Article  CAS  ADS  Google Scholar 

  16. Wang D, et al. Effects of sol–gel processing parameters on the phases and microstructures of HA films. Colloids Surf B Biointerfaces. 2007;57(2):237–42.

    Article  CAS  PubMed  Google Scholar 

  17. van Dijk K, et al. Influence of annealing temperature on RF magnetron sputtered calcium phosphate coatings. Biomaterials. 1996;17(4):405–10.

    Article  PubMed  Google Scholar 

  18. Ong JL, Lucas LC. Post-deposition heat treatments for ion beam sputter deposited calcium phosphate coatings. Biomaterials. 1994;15(5):337–41.

    Article  CAS  PubMed  Google Scholar 

  19. Jonasova L, et al. Biomimetic apatite formation on chemically treated titanium. Biomaterials. 2004;25(7–8):1187–94.

    Article  CAS  PubMed  Google Scholar 

  20. Garcia F, et al. Effect of heat treatment on pulsed laser deposited amorphous calcium phosphate coatings. J Biomed Mater Res. 1998;43(1):69–76.

    Article  CAS  PubMed  Google Scholar 

  21. Haders D, et al. TEP/EDTA doubly regulated hydrothermal crystallization of hydroxyapatite on metal substrates. Chem Mater. 2008;20(22):7177–87.

    Article  CAS  Google Scholar 

  22. Haders DJ, et al. Phase sequenced deposition of calcium titanate/hydroxyapatite films with controllable crystallographic texture onto Ti6Al4V by TEP regulated hydrothermal crystallization. Crystal Growth Des. 2009;9(8):3412–22.

    Article  CAS  Google Scholar 

  23. Huq NL, Cross KJ, Reynolds EC. Molecular modeling of a mutiphosphorylated sequence motif bound to hydroxyapatite surfaces. J Mol Model. 2000;6:35–47.

    Article  CAS  Google Scholar 

  24. Fujisawa R, Kuboki Y. Preferential adsorption of dentin and bone acidic proteins on the (100) face of hydroxyapatite crystals. Biochim Biophys Acta. 1991;1075(1):56–60.

    CAS  PubMed  Google Scholar 

  25. Sawyer AA, Hennessy KM, Bellis SL. The effect of adsorbed serum proteins, RGD and proteoglycan-binding peptides on the adhesion of mesenchymal stem cells to hydroxyapatite. Biomaterials. 2007;28(3):383–92.

    Article  CAS  PubMed  Google Scholar 

  26. Linez-Bataillon P, et al. In vitro MC3T3 osteoblast adhesion with respect to surface roughness of Ti6Al4V substrates. Biomol Eng. 2002;19(2–6):133–41.

    Article  CAS  PubMed  Google Scholar 

  27. Kim MJ, et al. Microrough titanium surface affects biologic response in MG63 osteoblast-like cells. J Biomed Mater Res A. 2006;79(4):1023–32.

    PubMed  Google Scholar 

  28. Green JR, Margerison D. Statistical treatment of experimental data. New York: Elsevier Scientific Publishing Company; 1978. p. 382.

    MATH  Google Scholar 

  29. Wang D, et al. Isolation and characterization of MC3T3–E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J Bone Miner Res. 1999;14(6):893–903.

    Article  CAS  PubMed  Google Scholar 

  30. Franceschi RT, Iyer BS. Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3-E1 cells. J Bone Miner Res. 1992;7(2):235–46.

    Article  CAS  PubMed  Google Scholar 

  31. Chou YF, et al. The effect of biomimetic apatite structure on osteoblast viability, proliferation, and gene expression. Biomaterials. 2005;26(3):285–95.

    Article  CAS  PubMed  Google Scholar 

  32. Soboyejo WO, et al. Interactions between MC3T3-E1 cells and textured Ti6Al4V surfaces. J Biomed Mater Res. 2002;62(1):56–72.

    Article  CAS  PubMed  Google Scholar 

  33. Ball MD, et al. Osteoblast growth on titanium foils coated with hydroxyapatite by pulsed laser ablation. Biomaterials. 2001;22(4):337–47.

    Article  CAS  PubMed  Google Scholar 

  34. Thian ES, et al. Magnetron co-sputtered silicon-containing hydroxyapatite thin films—an in vitro study. Biomaterials. 2005;26(16):2947–56.

    Article  CAS  PubMed  Google Scholar 

  35. Ohgushi H, et al. In vitro bone formation by rat marrow cell culture. J Biomed Mater Res. 1996;32(3):333–40.

    Article  CAS  PubMed  Google Scholar 

  36. Bagambisa FB, Joos U, Schilli W. Mechanisms and structure of the bond between bone and hydroxyapatite ceramics. J Biomed Mater Res. 1993;27(8):1047–55.

    Article  CAS  PubMed  Google Scholar 

  37. de Bruijin JD, et al. Analysis of the bony interface with various types of hydroxyapatite in vitro. Cells Mater. 1993;3(2):115–27.

    Google Scholar 

  38. Davies JE, Baldan N. Scanning electron microscopy of the bone-bioactive implant interface. J Biomed Mater Res. 1997;36(4):429–40.

    Article  CAS  PubMed  Google Scholar 

  39. de Bruijn JD, Bovell YP, van Blitterswijk CA. Structural arrangements at the interface between plasma sprayed calcium phosphates and bone. Biomaterials. 1994;15(7):543–50.

    Article  PubMed  Google Scholar 

  40. Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 1999;20(23–24):2287–303.

    Article  CAS  PubMed  Google Scholar 

  41. Flade K, et al. Osteocalcin-controlled dissolution-reprecipitation of calcium phosphate under biomimetic conditions. Chem Mater. 2001;13:3596–602.

    Article  CAS  Google Scholar 

  42. Boskey AL, et al. Concentration-dependent effects of dentin phosphophoryn in the regulation of in vitro hydroxyapatite formation and growth. Bone Miner. 1990;11(1):55–65.

    Article  CAS  PubMed  Google Scholar 

  43. Schmidt SR, Schweikart F, Andersson ME. Current methods for phosphoprotein isolation and enrichment. J Chromatogr B Anal Technol Biomed Life Sci. 2007;849(1–2):154–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the Rutgers Center for Ceramic Research, the National Science Foundation/Rutgers IGERT on Biointerfaces, which supported both D.J. Haders and C.C. Kazanecki, the Department of Education/Rutgers GAANN in Molecular, Cellular, and Nanosystems Bioengineering, the Rutgers University Graduate School New Brunswick, the New Jersey Center for Biomaterials, the Rutgers University Roger G. Ackerman Fellowship, and the Rutgers University Technology Commercialization Fund. The authors would like to thank Alexander Burukhin for his contribution to this work as well as Valentin Starovoytov for sputter coating biological specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard E. Riman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haders, D.J., Kazanecki, C.C., Denhardt, D.T. et al. Crystallographically engineered, hydrothermally crystallized hydroxyapatite films: an in vitro study of bioactivity. J Mater Sci: Mater Med 21, 1531–1542 (2010). https://doi.org/10.1007/s10856-010-4031-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4031-7

Keywords

Navigation