Skip to main content
Log in

Novel functionalized ternary copolymer fluorescent nanoparticles: synthesis, fluorescent characteristics and protein immobilization

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Novel fluorescent poly(styrene–acrylamide–acrylic acid) nanoparticles (FPSAAN) were synthesized by means of soapless emulsion polymerization and being modified with hydrazine hydrate by hydrazinolysis. The azidocarbonyl groups which can be rapidly coupled with proteins under mild condition were introduced onto the fluorescent nanoparticles by azido-reaction. Bovine serum albumin (BSA) was selected as a model protein to be covalently immobilized on the azidocarbonyl FPSAAN. Atom force microscopy (AFM), Transmission electron microscopy (TEM), Ultraviolet–visible (UV/Vis) spectrometer, Fourier transforms infrared spectrometer (FTIR), nanoparticle size analyzer and fluorescence spectrophotometer were used to characterize the FPSAAN. Results showed that FPSAAN had a regular spherical shape, and a dramatic narrow size distribution (polydispersity index 0.046 ± 0.009). The fluorescence intensity of FPSAAN (λexem = 253/306 nm), hydrazide-FPSAAN (λex/λem = 260/326 nm), and protein-immobilized FPSAAN (λexem = 258/325 nm) was linearly related to the concentration ranging from 1.0 × 10−3 g l−1 to 10.0 × 10−3 g l−1. The linear relationship was obtained. The equations are y = 52.808x + 16.465 (R 2 = 0.9927), y = 5.1814x + 4.1535 (R 2 = 0.9935) and y = 5.2227x + 5.2883 (R 2 = 0.9937), respectively. In addition, external factors such as pH and ionic strength exert a slight influence on fluorescent properties. The experiments of the immobilization of BSA indicated that FPSAAN with azidocarbonyl groups could be covalently coupled with BSA at the rate of 41.1%. Meanwhile, hCG antibody immobilized FPSAAN have the similar fluorescence characteristics to BSA immobilized FPSAAN. Only negligible difference of the fluorescence characteristics can be found. Furthermore, the fluorescence characteristics of hCG antibody immobilized FPSAAN have not been obviously affected after mixed with the hCG antigen and human plasma. These novel azidocarbonyl FPSAAN with stable fluorescence and active functional azidocarbonyl groups could be used as a promising fluorescent probe for quantitative detection, protein immobilization, cell labeling research and early rapid clinical diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

PSAAN:

Poly(styrene–acrylamide–acrylic acid) nanoparticles

FPSAAN:

Fluorescent poly(styrene–acrylamide–acrylic acid) nanoparticles

Hydrazide-FPSAAN:

FPSAAN bearing hydrazide groups

Azidocarbonyl FPSAAN:

FPSAAN bearing azidocarbonyl groups

Protein-immobilized FPSAAN:

Azidocarbonyl FPSAAN coupling with BSA

References

  1. M. Tabuchi, M. Ueda, N. Kaji, Y. Yamasaki, Y. Nagasaki, K. Yoshikawa, K. Kataoka, Y. Baba, Nat. Biotechnol. 22, 337–340 (2004). doi:10.1038/nbt939

    Article  PubMed  CAS  Google Scholar 

  2. X.Q. Liu, Y.P. Guang, H.Z. Liu, Z.Y. Ma, Y. Yang, X.B. Wu, J. Magn. Magn. Mater. 293, 111–118 (2005). doi:10.1016/j.jmmm.2005.01.051

    Article  ADS  CAS  Google Scholar 

  3. Y. Weizmann, F. Patolsky, E. Katz, I. Willner, J. Am. Chem. Soc. 125, 3452–3454 (2003). doi:10.1021/ja028850x

    Article  PubMed  CAS  Google Scholar 

  4. M. Nichkova, D. Dosev, S.J. Gee, B.D. Hammock, I.M. Kennedy, Anal. Chem. 77, 6864–6873 (2005). doi:10.1021/ac050826p

    Article  PubMed  CAS  Google Scholar 

  5. B.N.G. Giepmans, S.R. Adams, M.H. Ellisman, R.Y. Tsien, Science 312, 217–223 (2006). doi:10.1126/science.1124618

    Article  PubMed  ADS  CAS  Google Scholar 

  6. Y.R. Duan, Q. Wang, Z.R. Zhang, J. Mater. Sci: Mater. Med. 17, 509–516 (2006). doi:10.1007/s10856-006-8933-3

    Article  CAS  Google Scholar 

  7. Z.Q. Wu, S.L. Gong, C. Li, Z. Zhang, W.H. Huang, L.Z. Meng, X.J. Lu, Y.B. He, Eur. Polym. J. 41, 1985–1992 (2005). doi:10.1016/j.eurpolymj.2005.03.021

    Article  CAS  Google Scholar 

  8. L. Josephson, M.F. Kircher, U. Mahmood, Y. Tang, R. Weissleder, Bioconjug. Chem. 13, 554–560 (2002). doi:10.1021/bc015555d

    Article  PubMed  CAS  Google Scholar 

  9. H. Ow, D.R. Larson, M. Srivastava, B.A. Baird, W.W. Webb, U. Wiesner, Nano. Lett. 5, 113–117 (2005). doi:10.1021/nl0482478

    Article  PubMed  CAS  Google Scholar 

  10. J.F. Peng, K.M. Wang, W.H. Tan, X.X. He, C.M. He, P. Wu, F. Liu, Talanta 71, 833–840 (2007). doi:10.1016/j.talanta.2006.05.064

    Article  PubMed  CAS  Google Scholar 

  11. J. Choi, Y. Zhao, D. Zhang, S. Chien, Y.H. Lo, Nano. Lett. 3, 995–1000 (2003). doi:10.1021/nl034106e

    Article  CAS  Google Scholar 

  12. H.L. Jiang, K.J. Zhu, Biomaterials 23, 2345–2351 (2002). doi:10.1016/S0142-9612(01)00368-4

    Article  PubMed  CAS  MathSciNet  Google Scholar 

  13. S.A. Kushon, K.D. Ley, K. Bradford, R.M. Jones, D. McBranch, D. Whitten, Langmuir 18, 7245–7249 (2002). doi:10.1021/la026211u

    Article  CAS  Google Scholar 

  14. B.I. Lemon, R.M. Crooks, J. Am. Chem. Soc. 122, 12886–12887 (2000). doi:10.1021/ja0031321

    Article  CAS  Google Scholar 

  15. C.S. Yang, C.H. Chang, P.J. Tsai, W.Y. Chen, F.G. Tseng, L.W. Lo, Anal. Chem. 76, 4465–4471 (2004). doi:10.1021/ac035491v

    Article  PubMed  CAS  Google Scholar 

  16. S. Santra, P. Zhang, K. Wang, R. Tapec, W. Tan, Anal. Chem. 73, 4988–4993 (2001). doi:10.1021/ac010406+

    Article  PubMed  CAS  Google Scholar 

  17. C. Wu, C. Szymanski, J. McNeill, Langmuir 22, 2956–2960 (2006). doi:10.1021/la060188l

    Article  PubMed  CAS  Google Scholar 

  18. B. Dubertret, P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou, A. Libchaber, Science 298, 1759–1762 (2002). doi:10.1126/science.1077194

    Article  PubMed  ADS  CAS  Google Scholar 

  19. C.R. Goldsmith, J. Jaworski, M. Sheng, S.J.J. Lippard, J. Am. Chem. Soc. 128, 418–419 (2006). doi:10.1021/ja0559754

    Article  PubMed  CAS  Google Scholar 

  20. J.W. Gratama, J.L. D’Hautcourt, F. Mandy, G. Rothe, D. Barnett, G. Janossy, S. Papa, G. Schmitz, R. Lenkei, Cytometry 33, 166–178 (1998). doi:10.1002/(SICI)1097-0320(19981001)33:2<166::AID-CYTO11>3.0.CO;2-S

    Article  PubMed  CAS  Google Scholar 

  21. C. Scholz, M. Iijima, Y. Nagasaki, K. Kataoka, Macromolecules 28, 7295–7297 (1995). doi:10.1021/ma00125a040

    Article  CAS  Google Scholar 

  22. S.E. Shim, H. Lee, S. Choe, Macromolecules 37, 5565–5571 (2004). doi:10.1021/ma049930j

    Article  CAS  Google Scholar 

  23. W.H. Tan, K.M. Wang, X.X. He, X.J. Zhao, T. Drake, L. Wang, R.P. Bagwe, Med. Res. Rev. 24, 621–638 (2004)

    Article  PubMed  CAS  Google Scholar 

  24. Z.Y. Ma, Y.P. Guan, X.Q. Liu, H.Z. Liu, Polym. Adv. Technol. 16, 554–558 (2005). doi:10.1002/pat.618

    Article  CAS  Google Scholar 

  25. Y.C. Liu, G.J. Dong, Y.C. Zhao, J. Immunol. Methods 124, 159–163 (1989). doi:10.1016/0022-1759(89)90348-7

    Article  PubMed  CAS  Google Scholar 

  26. G.P. Wang, E.Q. Song, H.Y. Xie, Z.L. Zhang, Z.Q. Tian, C. Zuo, D.W. Pang, D.C. Wu, Y.B. Shi, Chem. Commun. 34, 4276–4278 (2005)

    Article  Google Scholar 

  27. W. Mehnert, K. Mäder, Adv. Drug Deliv. Rev. 47, 165–196 (2001). doi:10.1016/S0169-409X(01)00105-3

    Article  PubMed  CAS  Google Scholar 

  28. K. Aslan, M. Wu, J.R. Lakowicz, C.D. Geddes, J. Am. Chem. Soc. 129, 1524–1525 (2007). doi:10.1021/ja0680820

    Article  PubMed  CAS  Google Scholar 

  29. J.E. Fuller, G.T. Zugates, L.S. Ferreira, H.S. Ow, N.N. Nguyen, U.B. Wiesner, R.S. Langer, Biomaterials 29, 1526–1532 (2008). doi:10.1016/j.biomaterials.2007.11.025

    Article  PubMed  CAS  Google Scholar 

  30. F. Bertorelle, C. Wilhelm, J. Roger, F. Gazeau, C. Me’nager, V. Cabuil, Langmuir 22, 5385–5391 (2006). doi:10.1021/la052710u

    Article  PubMed  CAS  Google Scholar 

  31. T.M. Blattler, S. Pasche, M. Textor, H.J. Griesser, Langmuir 22, 5760–5769 (2006). doi:10.1021/la0602766

    Article  PubMed  Google Scholar 

  32. C.D. Hahn, C. Leitner, T. Weinbrenner, R. Schlapak, A. Tinazli, R. Tampe, B. Lackner, C. Steindl, P. Hinterdorfer, H.J. Gruber, M. Holzl, Bioconjug. Chem. 18, 247–253 (2007). doi:10.1021/bc060292e

    Article  PubMed  CAS  Google Scholar 

  33. C.H. Ho, L. Limberis, K.D. Caldwell, R.J. Stewart, Langmuir 14, 3889–3894 (1998). doi:10.1021/la980148k

    Article  CAS  Google Scholar 

  34. S. Ko, J. Jang, Biomacromolecules 8, 1400–1403 (2007). doi:10.1021/bm070077g

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study has been supported by grants from National Natural Science Foundations of China (Nos. 30772658 and 30570494).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daocheng Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, M., Wu, D. & Guo, N. Novel functionalized ternary copolymer fluorescent nanoparticles: synthesis, fluorescent characteristics and protein immobilization. J Mater Sci: Mater Med 20, 563–572 (2009). https://doi.org/10.1007/s10856-008-3596-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3596-x

Keywords

Navigation