Skip to main content
Log in

Microstructure, optical and dielectric properties of cerium oxide thin films prepared by pulsed laser deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cerium oxide (CeO2) thin films were deposited on Pt (111)/Ti/SiO2/Si(100) substrates using pulsed laser deposition method at different temperatures such as, 300 K, 573 K and 873 K with 3 × 10−2 mbar oxygen partial pressure. The prepared films were systematically investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL) and electrical measurement system. XRD analysis clearly showed improved crystallinity of CeO2 films prepared at 573 and 873 K substrate temperatures. The AFM analysis indicated the uniform distribution of the nanocrystallites and dense structure with the roughness (RMS) of ~ 2.1–3.6 nm. The PL studies of the films showed a broad peak at ~ 366–368 nm, indicating the optical bandgap of 3.37–3.38 eV. The electrical property study showed minimum leakage current density of 2.0 × 10−7 A/cm2 at 873 K, which was measured at 100 kV and this value was much lower than that of the CeO2 film deposited at 300 K. The dielectric constants are increased and dielectric loss values decreased for the films with increasing substrate temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Rathee, M. Kumar, S.K. Arya, Int. J. Comp. Appl. 8, 10–17 (2010)

    Google Scholar 

  2. S. Guha, V. Narayanan, Annu. Rev. Mater. Res. 39, 181–202 (2009)

    Article  Google Scholar 

  3. A. Kingon, J.P. Maria, S.K. Streiffer, Nature 406, 1032–1038 (2000)

    Article  Google Scholar 

  4. Jung-Ho Yoo, Seok-Woo Nam, Sung-Kwan Kang, Yun-Ha Jeong, Dae-Hong Ko, Ku Ja-Hum, Hoo-Jeong Lee, Microelectron. Eng. 56, 187–190 (2001)

    Article  Google Scholar 

  5. S.K. Sahoo, M. Mohapatra, A.K. Singh, S. Anand, Mater. Manuf. Process. 25, 982–989 (2010)

    Article  Google Scholar 

  6. L.V. Qipeng, S. Zhang, S. Deng, Y. Xu, G. Li, Q. Li, Y. Jin, Surf. Coat. Technol. 320, 190–195 (2017)

    Article  Google Scholar 

  7. B.H. Lee, L. Kang, R. Nieh, W.J. Qi, C.J. Lee, Appl. Phys. Lett. 76, 1926–1928 (2000)

    Article  Google Scholar 

  8. H.C. Zhong, G. Heuss, V. Misra, H. Luan, C. Lee, D.L. Kwong, Appl. Phys. Lett. 78, 1134–1136 (2001)

    Article  Google Scholar 

  9. S.J. Wang, S.Y. Xu, L.P. You, S.L. Lim, C.K. Ong, Semicond. Sci. Technol. 13, 362–367 (2000)

    Google Scholar 

  10. H.J. Quah, W.F. Lim, K.Y. Cheong, Z. Hassan, Z. Lockman, J. Cryst. Growth 326, 2–8 (2011)

    Article  Google Scholar 

  11. G. Balakrishnan, S. Tripura Sundari, P. Kuppusami, P. Chandra Mohan, M.P. Srinivasan, E. Mohandas, V. Ganesan, D. Sastikumar, Thin Solid Films 519, 2520–2526 (2011)

    Article  Google Scholar 

  12. G. Balakrishnan, P. Kuppusami, T.N. Sairam, R. Thirumurugesan, E. Mohandas, D. Sastikumar, J. Nanosci. Nanotechnol. 9, 5421–5424 (2009)

    Article  Google Scholar 

  13. G. Balakrishnan, C.M. Raghavan, C. Ghosh, R. Divakar, E. Mohandas, J.I. Song, S.I. Bae, T.G. Kim, Ceram. Int. 39, 8327–8333 (2013)

    Article  Google Scholar 

  14. G. Balakrishnan, P. Sudhakara, A. Wasy, H. Sun Ho, K.S. Shin, J.I. Song, Thin Solid Films 546, 467–471 (2014)

    Article  Google Scholar 

  15. M. Leskela, K. Kukli, M. Ritala, J. Alloys Compd. 418, 27–34 (2006)

    Article  Google Scholar 

  16. Jyrki Lappalainen, Darja Kek, Harry L. Tuller, J. Eur. Ceram. Soc. 24, 1459–1462 (2004)

    Article  Google Scholar 

  17. F. Fernandez-Gutierrez, O. Sanchez Garrido, M. Hernandez-velez, R.M. Bueno, J.M. Martinez-Duart, Solid State Electron. 42, 925–930 (1998)

    Article  Google Scholar 

  18. K.S. Agrawal, V.S. Patil, A.G. Khairnar, A.M. Mahajan, J. Mater. Sci.: Mater. EIectron. 28, 12503–12508 (2017)

    Google Scholar 

  19. Y. Chen, Y. Zhang, J. Baker, P. Majumdar, Z. Yang, M. Han, F. Chen, ACS Appl. Mater. Interfaces 6, 5130–5136 (2014)

    Article  Google Scholar 

  20. Y. Nishikawa, N. Fukushima, N. Yasuda, K. Nakayama, S. Ikegawa, Jpn. J. Appl. Phys. 41, 2480–2483 (2002)

    Article  Google Scholar 

  21. P.J. King, M. Werner, P.R. Chalker, A.C. Jones, H.C. Aspinall, J. Basca, J.S. Wrench, K. Black, H.O. Davies, P.N. Heys, Thin Solid Films 519, 4192–4195 (2011)

    Article  Google Scholar 

  22. T. Nakazawa, T. Inoue, M. Satoh, Y. Yamamoto, Jpn. J. Appl. Phys. 34, 548–553 (1995)

    Article  Google Scholar 

  23. M. Hartmanova, K. Gmucova, I. Thurzo, Solid State Ionics 130, 105–110 (2000)

    Article  Google Scholar 

  24. S. Logothetidis, P. Patsalas, E.K. Evangelou, N. Konofaos, I. Tsiaoussis, N. Frangis, Mater. Sci. Eng. B 109, 69–73 (2004)

    Article  Google Scholar 

  25. B. Elidrissi, M. Addou, M. Regragui, C. Monty, A. Bougrine, A. Kachouane, Thin Solid Films 379, 23–27 (2000)

    Article  Google Scholar 

  26. W. Ming, K.L. Choy, J. Cryst. Growth 284, 464–469 (2005)

    Article  Google Scholar 

  27. N.M. Ozer, Sol. Energ. Mater. Sol. Cells 68, 391–400 (2001)

    Article  Google Scholar 

  28. K.R. Murali, J. Mater. Sci.: Mater. Electron. 19, 369–371 (2008)

    Google Scholar 

  29. G. Hass, J.B. Ramsey, R. Thun, J. Opt. Soc. Am. 48, 324–327 (1958)

    Article  Google Scholar 

  30. T. Wiktorczyk, P. Biegański, E. Zielony, Opt. Mater. 34, 2101–2107 (2012)

    Article  Google Scholar 

  31. S. Kanakaraju, S. Mohan, A.K. Sood, Thin Solid Films 305, 191–195 (1997)

    Article  Google Scholar 

  32. F.C. Chiu, C.M. Lai, J. Appl. Phys. D 43, 075104 (2010)

    Article  Google Scholar 

  33. D.B. Chrisey, G.B. Hubler (eds.), Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994)

    Google Scholar 

  34. R. Murugan, G. Vijayprasath, T. Mahalingam, Y. Hayakawa, G. Ravim, J. Mater. Sci.: Mater. EIectron. 26, 2800–2809 (2015)

    Google Scholar 

  35. A.G. Khairnar, A.M. Mahajan, Bull. Mater. Sci. 36, 259–263 (2013)

    Article  Google Scholar 

  36. M.M. EI-Nahass, A.M. Hassanien, A.A. Atta, E.M.A. Ahmed, A.A. Ward, J. Mater. Sci.: Mater. EIectron. 28, 1501–1507 (2017)

    Google Scholar 

  37. T. Yamamoto, T. Hiroyoshi Momida, T. Hamada, T. Uda, T. Ohno, Thin Solid Films 486, 136–140 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors C. M. Raghavan wants to thanks Marie Skłodowska-Curie Individual Fellowship (MOFUS, # 795356).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Balakrishnan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakrishnan, G., Panda, A.K., Raghavan, C.M. et al. Microstructure, optical and dielectric properties of cerium oxide thin films prepared by pulsed laser deposition. J Mater Sci: Mater Electron 30, 16548–16553 (2019). https://doi.org/10.1007/s10854-019-02031-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02031-3

Navigation