Skip to main content
Log in

The CV characteristics of the Cu2WSe4/p-Si heterojunction depending on wide range temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu2WSe4 nanosheets were synthesized by hot-injection method and employed as interfacial layers between the p-Si and Au metal via spin coating technique. The capacitance–voltage (CV) and conductance-voltage (GV) measurements were performed on the Cu2WSe4/p-Si heterojunction device depending on wide range temperatures from 80 to 400 K by 40 K steps. The device exhibited decreasing capacitance behavior with increasing temperature at the inversion region because of the interface states and series resistance. The conductance values increased with increasing temperature owing to increasing free charge carriers. The series resistance (Rs) and interface states density (Nss) were extracted from CV and GV measurements and discussed in the details. The results highlighted that the electrical parameters are a strong function of the voltage and temperature. The Au/Cu2WSe4/p-Si device can be employed for controllable capacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V. Sousa, Chalcogenide materials and their application to non-volatile memories. Microelectron. Eng. 88, 807–813 (2011). https://doi.org/10.1016/j.mee.2010.06.042

    Article  CAS  Google Scholar 

  2. P. Lucas, B. Bureau, Selenide glass fibers for biochemical infrared sensing, in Applications of chalcogenides S, Se, Te, ed. by G.K. Ahluwalia (Springer International Publishing, Cham, 2017), pp. 285–319

    Chapter  Google Scholar 

  3. J. Troles, L. Brilland, Chalcogenide microstructured optical fibers for infrared applications, in Chalcogenide glasses, 1st edn., ed. by J.-L. Adam, X. Zhang (Woodhead Publishing, Cambridge, 2013), pp. 411–437

    Google Scholar 

  4. G. Kaur Ahluwalia (ed.), Applications of chalcogenides: S, Se, and Te, 1st edn. (Springer International Publishing, Cham, 2017)

    Google Scholar 

  5. Y. Kim, A.P. Tiwari, O. Prakash, H. Lee, Activation of ternary transition metal chalcogenide basal planes through chemical strain for the hydrogen evolution reaction. ChemPlusChem 82, 1166 (2017). https://doi.org/10.1002/cplu.201700247

    Article  CAS  Google Scholar 

  6. A.P. Tiwari, D. Kim, Y. Kim, O. Prakash, H. Lee, Highly active and stable layered ternary transition metal chalcogenide for hydrogen evolution reaction. Nano Energy 28, 366–372 (2016). https://doi.org/10.1016/j.nanoen.2016.08.065

    Article  CAS  Google Scholar 

  7. J. Liu, H. Wang, C. Fang, L. Fu, X. Qian, Van der waals stacking-induced topological phase transition in layered ternary transition metal chalcogenides. Nano Lett. 17, 467–475 (2017). https://doi.org/10.1021/acs.nanolett.6b04487

    Article  CAS  Google Scholar 

  8. A. Wold, K. Dwight, Ternary transition metal chalcogenides AB2X4, Solid state chemistry (Springer, Dordrecht, 1993), pp. 222–235

    Chapter  Google Scholar 

  9. W. Chen, H. Chen, H. Zhu, Q. Gao, J. Luo, Y. Wang, S. Zhang, K. Zhang, C. Wang, Y. Xiong, Y. Wu, X. Zheng, W. Chu, L. Song, Z. Wu, Solvothermal synthesis of ternary Cu2MoS4 nanosheets: structural characterization at the atomic level. Small 10, 4637–4644 (2014). https://doi.org/10.1002/smll.201400752

    Article  CAS  Google Scholar 

  10. A. Kagkoura, T. Skaltsas, N. Tagmatarchis, Transition-metal chalcogenide/graphene ensembles for light-induced energy applications. Chem. A 23, 12967–12979 (2017). https://doi.org/10.1002/chem.201700242

    Article  CAS  Google Scholar 

  11. S. Zheng, L. Sun, T. Yin, A.M. Dubrovkin, F. Liu, Z. Liu, Z.X. Shen, H.J. Fan, Monolayers of WxMo1-xS2alloy heterostructure with in-plane composition variations. Appl. Phys. Lett. 106, 063113 (2015). https://doi.org/10.1063/1.4908256

    Article  CAS  Google Scholar 

  12. S.D. Karande, N. Kaushik, D.S. Narang, D. Late, S. Lodha, Thickness tunable transport in alloyed WSSe field effect transistors. Appl. Phys. Lett. 109, 142101 (2016). https://doi.org/10.1063/1.4964289

    Article  CAS  Google Scholar 

  13. A. Sarilmaz, M. Can, F. Ozel, Ternary copper tungsten selenide nanosheets synthesized by a facile hot-injection method. J. Alloys Compd. 699, 479–483 (2017). https://doi.org/10.1016/j.jallcom.2016.12.401

    Article  CAS  Google Scholar 

  14. A. Kocyigit, M. Yıldırım, A. Sarılmaz, F. Ozel, The Au/Cu2WSe4/p-Si photodiode: electrical and morphological characterization. J. Alloys Compd. 780, 186–192 (2019). https://doi.org/10.1016/j.jallcom.2018.11.372

    Article  CAS  Google Scholar 

  15. M. Yıldırım, A. Sarılmaz, F. Özel, Investigation of optical and device parameters of colloidal copper tungsten selenide ternary nanosheets. J. Mater. Sci. 29, 762–770 (2018). https://doi.org/10.1007/s10854-017-7970-7

    Article  CAS  Google Scholar 

  16. İ. Yücedağ, A. Kaya, H. Tecimer, Ş. Altındal, Temperature and voltage dependences of dielectric properties and ac electrical conductivity in Au/PVC + TCNQ/p-Si structures. Mater. Sci. Semicond. Process. 28, 37–42 (2014). https://doi.org/10.1016/j.mssp.2014.03.051

    Article  CAS  Google Scholar 

  17. Ş. Aydoğan, M.L. Grilli, M. Yilmaz, Z. Çaldiran, H. Kaçuş, A facile growth of spray based ZnO films and device performance investigation for Schottky diodes: determination of interface state density distribution. J. Alloys Compd. 708, 55–66 (2017). https://doi.org/10.1016/j.jallcom.2017.02.198

    Article  CAS  Google Scholar 

  18. H. Matsushita, Y. Tojo, T. Takizawa, Schottky properties of CuInSe2 single crystals grown by the horizontal Bridgman method with controlling Se vapor pressure. J. Phys. Chem. Solids 64, 1825–1829 (2003). https://doi.org/10.1016/S0022-3697(03)00247-6

    Article  CAS  Google Scholar 

  19. D. Korucu, Ş. Altindal, T.S. Mammadov, S. Özçelik, On the temperature dependent anomalous peak and negative capacitance in Au/n-InP schottky barrier diodes. Optoelectron. Adv. Mater. Rapid Commun. 3, 56–59 (2009)

    CAS  Google Scholar 

  20. S. Stemmer, V. Chobpattana, S. Rajan, Frequency dispersion in III-V metal-oxide-semiconductor capacitors. Appl. Phys. Lett. 100, 233510 (2012). https://doi.org/10.1063/1.4724330

    Article  CAS  Google Scholar 

  21. İ. Orak, The performances photodiode and diode of ZnO thin film by atomic layer deposition technique. Solid State Commun. 247, 17–22 (2016). https://doi.org/10.1016/j.ssc.2016.08.004

    Article  CAS  Google Scholar 

  22. Ö. Vural, Y. Şafak, A. Türüt, Ş. Altındal, Temperature dependent negative capacitance behavior of Al/rhodamine-101/n-GaAs Schottky barrier diodes and Rs effects on the C–V and G/ω–V characteristics. J. Alloys Compd. 513, 107–111 (2012). https://doi.org/10.1016/j.jallcom.2011.09.101

    Article  CAS  Google Scholar 

  23. S. Demirezen, Ş. Altindal, On the temperature dependent profile of interface states and series resistance characteristics in (Ni/Au)/Al0.22Ga0.78N/AlN/GaN heterostructures. Phys. B 405, 1130–1138 (2010). https://doi.org/10.1016/j.physb.2009.11.015

    Article  CAS  Google Scholar 

  24. E. Arslan, Y. Şafak, Ş. Altındal, Ö. Kelekçi, E. Özbay, Ş. Altindal, Ö. Kelekçi, E. Özbay, Temperature dependent negative capacitance behavior in (Ni/Au)/AlGaN/AlN/GaN heterostructures. J. Non-Cryst. Solids 356, 1006–1011 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.01.024

    Article  CAS  Google Scholar 

  25. S. Duman, E. Gür, S. Doğan, S. Tüzemen, Temperature dependent capacitance and DLTS studies of Ni/n-type 6H-SiC Schottky diode. Curr. Appl. Phys. 9, 1181–1185 (2009). https://doi.org/10.1016/j.cap.2009.01.009

    Article  Google Scholar 

  26. D.E. Yildiz, Ş. Altindal, H. Kanbur, Gaussian distribution of inhomogeneous barrier height in Al/SiO2/p-Si Schottky diodes. J. Appl. Phys. 103, 124502 (2008). https://doi.org/10.1063/1.2936963

    Article  CAS  Google Scholar 

  27. X. Zou, G. Fang, J. Wan, X. He, H. Wang, N. Liu, H. Long, X. Zhao, Improved subthreshold swing and gate-bias stressing stability of p-type Cu2O thin-film transistors using a Hfo2high-k gate dielectric grown on a SiO2/Si substrate by pulsed laser ablation. IEEE Trans. Electron Devices 58, 2003–2007 (2011). https://doi.org/10.1109/TED.2011.2142313

    Article  CAS  Google Scholar 

  28. G. Conibeer, I. Perez-Wurfl, X. Hao, D. Di, D. Lin, Si solid-state quantum dot-based materials for tandem solar cells. Nanoscale Res. Lett. 7, 193 (2012). https://doi.org/10.1186/1556-276X-7-193

    Article  CAS  Google Scholar 

  29. A. Gümüş, G. Ersöz, İ. Yücedağ, S. Bayrakdar, Ş. Altindal, Comparative study of the temperature-dependent dielectric properties of Au/PPy/n-Si (MPS)-type Schottky barrier diodes. J. Korean Phys. Soc. 67, 889–895 (2015). https://doi.org/10.3938/jkps.67.889

    Article  CAS  Google Scholar 

  30. M. Yildirim, P. Durmuş, Ş. Altindal, Analyses of temperature-dependent interface states, series resistances, and AC electrical conductivities of Al/p—Si and Al/Bi4Ti 3O12/p—Si structures by using the admittance spectroscopy method. Chin. Phys. B 22, 108502 (2013). https://doi.org/10.1088/1674-1056/22/10/108502

    Article  CAS  Google Scholar 

  31. İ. Yücedağ, A. Kaya, Ş. Altındal, I. Uslu, Frequency and voltage-dependent electrical and dielectric properties of Al/Co-doped PVA/p-Si structures at room temperature. Chin. Phys. B 23, 047304 (2014). https://doi.org/10.1088/1674-1056/23/4/047304

    Article  CAS  Google Scholar 

  32. İ. Dökme, Ş. Altındal, T. Tunç, İ. Uslu, Temperature dependent electrical and dielectric properties of Au/polyvinyl alcohol (Ni, Zn-doped)/n-Si Schottky diodes. Microelectron. Reliab. 50, 39–44 (2010). https://doi.org/10.1016/J.MICROREL.2009.09.005

    Article  Google Scholar 

  33. M.M. Bülbül, S. Zeyrek, Ş. Altındal, H. Yüzer, On the profile of temperature dependent series resistance in Al/Si3N4/p-Si (MIS) Schottky diodes. Microelectron. Eng. 83, 577–581 (2006). https://doi.org/10.1016/j.mee.2005.12.013

    Article  CAS  Google Scholar 

  34. Ç. Bilkan, Ş. Altındal, Y. Azizian-Kalandaragh, Investigation of frequency and voltage dependence surface states and series resistance profiles using admittance measurements in Al/p-Si with Co3O4-PVA interlayer structures. Phys. B 515, 28–33 (2017). https://doi.org/10.1016/J.PHYSB.2017.04.002

    Article  CAS  Google Scholar 

  35. I. Orak, A. Kocyigit, I. Karteri, S. Uruş, Frequency-dependent electrical characterization of GO-SiO2 composites in a Schottky device. J. Electron. Mater. 47, 6691–6700 (2018). https://doi.org/10.1007/s11664-018-6571-4

    Article  CAS  Google Scholar 

  36. J. Szatkowski, K. Sierański, Simple interface-layer model for the nonideal characteristics of the Schottky-barrier diode. Solid State Electron. 35, 1013–1015 (1992). https://doi.org/10.1016/0038-1101(92)90333-8

    Article  CAS  Google Scholar 

  37. M.M. Bülbül, S. Bengi, I. Dökme, S. Altındal, T. Tunç, Temperature dependent capacitance and conductance-voltage characteristics of Au/polyvinyl alcohol(Co, Zn)/n-Si Schottky diodes. J. Appl. Phys. 108, 034517 (2010). https://doi.org/10.1063/1.3462427

    Article  CAS  Google Scholar 

  38. S.M. Sze, Physics of semiconductor devices, 2nd edn. (Wiley, NewYork, 1981)

    Google Scholar 

  39. Ş. Aydoǧan, M. Saǧlam, A. Türüt, The effects of the temperature on the some parameters obtained from current-voltage and capacitance-voltage characteristics of polypyrrole/n-Si structure. Polymer (Guildf) 46, 563–568 (2005). https://doi.org/10.1016/j.polymer.2004.11.006

    Article  CAS  Google Scholar 

  40. Ç. Bilkan, A. Gümüş, Ş. Altındal, The source of negative capacitance and anomalous peak in the forward bias capacitance-voltage in Cr/p-si Schottky barrier diodes (SBDs). Mater. Sci. Semicond. Process. 39, 484–491 (2015). https://doi.org/10.1016/j.mssp.2015.05.044

    Article  CAS  Google Scholar 

  41. A. Turut, A. Karabulut, K. Ejderha, N. Bıyıklı, Capacitance–conductance–current–voltage characteristics of atomic layer deposited Au/Ti/Al2O3/n-GaAs MIS structures. Mater. Sci. Semicond. Process. 39, 400–407 (2015). https://doi.org/10.1016/j.mssp.2015.05.025

    Article  CAS  Google Scholar 

  42. I.S. Yahia, M. Fadel, G.B. Sakr, S.S. Shenouda, F. Yakuphanoglu, Effect of the frequency and temperature on the complex impedance spectroscopy (C–V and G-V) of p-ZnGa2Se4/n-Si nanostructure heterojunction diode. J. Mater. Sci. 47, 1719–1728 (2012). https://doi.org/10.1007/s10853-011-5951-4

    Article  CAS  Google Scholar 

  43. Y. Şafak-Asar, T.T. Asar, Ş. Altındal, S. Özçelik, Ş. Altindal, S. Özçelik, Investigation of dielectric relaxation and ac electrical conductivity using impedance spectroscopy method in (AuZn)/TiO2/p-GaAs(1 1 0) schottky barrier diodes. J. Alloys Compd. 628, 442–449 (2015). https://doi.org/10.1016/j.jallcom.2014.12.170

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to Selçuk University BAP office (Project Number 17401159) and Karamanoglu Mehmetbey University (Grand Number: 32-M-16) for Scientific Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Faruk Ozel or Murat Yıldırım.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koçyiğit, A., Küçükçelebi, H., Sarılmaz, A. et al. The CV characteristics of the Cu2WSe4/p-Si heterojunction depending on wide range temperature. J Mater Sci: Mater Electron 30, 11994–12000 (2019). https://doi.org/10.1007/s10854-019-01553-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01553-0

Navigation