Skip to main content
Log in

Conduction mechanism and magnetic behavior of Cu doped barium hexaferrite ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

M-type barium hexaferrite ceramics (BaM) are important materials owing to their tremendous applications and useful properties. However magnetic and electrical properties of Cu substituted BaM haven’t been studied yet. In the present study, Cu doped BaM samples having chemical formula BaFe12−xCuxO19 (where x = 0, 0.1, 0.3 and 0.5) were synthesized by conventional solid state mixed oxide route. X-ray diffraction and Fourier transform infrared spectroscopy confirmed the formation of hexagonal magnetoplumbite structure with space group P63/mmc as the major phase in all the samples. Scanning electron microscopy revealed the dense structure of undoped and doped samples with platelet-like morphology. Vibrating sample magnetometry showed a large decrease in the coercivity of BaM without the loss of saturation magnetization by the addition of Cu. Magnetic measurement at cryogenic temperature (25 K) revealed that Cu doped sample showed less variation in magnetic properties on decreasing the temperature as compared to undoped BaM samples. Room temperature dielectric studies showed that addition of Cu caused a decrease in dielectric loss however it increased at higher substitution level i.e. x = 0.5. High temperature conductivity studies revealed that single-ionized oxygen vacancies are responsible for conduction in Cu doped BaM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57(7), 1191–1334 (2012)

    Article  Google Scholar 

  2. V. Anbarasu et al., Effect of divalent cation substitution in the magnetoplumbite structured BaFe12O19 system. J. Mater. Sci.: Mater. Electron. 24(3), 916–926 (2013)

    Google Scholar 

  3. M.A. Rafiq et al., Effect of Ni2+ substitution on the structural, magnetic, and dielectric properties of barium hexagonal ferrites (BaFe12O19). J. Electron. Mater. 46(1), 241–246 (2017)

    Article  Google Scholar 

  4. Z. Mosleh et al., Structural, magnetic and microwave absorption properties of Ce-doped barium hexaferrite. J. Magn. Magn. Mater. 397, 101–107 (2016)

    Article  Google Scholar 

  5. M.H. Shams et al., Effect of Mg2+ and Ti4+ dopants on the structural, magnetic and high-frequency ferromagnetic properties of barium hexaferrite. J. Magn. Magn. Mater. 399, 10–18 (2016)

    Article  Google Scholar 

  6. M.S.E. Shafie et al., Magnetic M–H loops family characteristics in the microstructure evolution of BaFe12O19. J. Mater. Sci.: Mater. Electron. 25(9), 3787–3794 (2014)

    Google Scholar 

  7. L. Wang et al., XAFS and XPS studies on site occupation of Sm3+ ions in Sm doped M-type BaFe12O19. J. Magn. Magn. Mater. 377, 362–367 (2015)

    Article  Google Scholar 

  8. V.N. Dhage et al., Structural and magnetic behaviour of aluminium doped barium hexaferrite nanoparticles synthesized by solution combustion technique. Phys B 406(4), 789–793 (2011)

    Article  Google Scholar 

  9. G.M. Rai, M. Iqbal, K. Kubra, Effect of Ho3+ substitutions on the structural and magnetic properties of BaFe12O19 hexaferrites. J. Alloy. Compd. 495(1), 229–233 (2010)

    Article  Google Scholar 

  10. H. Sözeri et al., Magnetic, dielectric and microwave properties of M–Ti substituted barium hexaferrites (M = Mn2+, Co2+, Cu2+, Ni2+, Zn2+). Ceram. Int. 40(6), 8645–8657 (2014)

    Article  Google Scholar 

  11. R.A. Pawar et al., Ce3+ incorporated structural and magnetic properties of M type barium hexaferrites. J. Magn. Magn. Mater. 378, 59–63 (2015)

    Article  Google Scholar 

  12. V.N. Dhage et al., Influence of chromium substitution on structural and magnetic properties of BaFe12O19 powder prepared by sol–gel auto combustion method. J. Alloy. Compd. 509(12), 4394–4398 (2011)

    Article  Google Scholar 

  13. I. Bsoul, S. Mahmood, Magnetic and structural properties of BaFe12−xGaxO19 nanoparticles. J. Alloy. Compd. 489(1), 110–114 (2010)

    Article  Google Scholar 

  14. M.V. Rane et al., Magnetic properties of NiZr substituted barium ferrite. J. Magn. Magn. Mater. 195(2), L256–L260 (1999)

    Article  Google Scholar 

  15. D. Mishra et al., Studies on characterization, microstructures and magnetic properties of nano-size barium hexa-ferrite prepared through a hydrothermal precipitation–calcination route. Mater. Chem. Phys. 86(1), 132–136 (2004)

    Article  Google Scholar 

  16. L. Rezlescu et al., Fine barium hexaferrite powder prepared by the crystallisation of glass. J. Magn. Magn. Mater. 193(1), 288–290 (1999)

    Article  Google Scholar 

  17. X. Liu et al., An ultrafine barium ferrite powder of high coercivity from water-in-oil microemulsion. J. Magn. Magn. Mater. 184(3), 344–354 (1998)

    Article  Google Scholar 

  18. A. Ataie, S. Heshmati-Manesh, Synthesis of ultra-fine particles of strontium hexaferrite by a modified co-precipitation method. J. Eur. Ceram. Soc. 21(10), 1951–1955 (2001)

    Article  Google Scholar 

  19. V. Sankaranarayanan, D. Khan, Mechanism of the formation of nanoscale M-type barium hexaferrite in the citrate precursor method. J. Magn. Magn. Mater. 153(3), 337–346 (1996)

    Article  Google Scholar 

  20. L. Junliang et al., Synthesis and magnetic properties of quasi-single domain M-type barium hexaferrite powders via sol–gel auto-combustion: effects of pH and the ratio of citric acid to metal ions (CA/M). J. Alloy. Compd. 479(1), 863–869 (2009)

    Article  Google Scholar 

  21. P. Meng et al., Tunable complex permeability and enhanced microwave absorption properties of BaNixCo1−xTiFe10O19. J. Alloy. Compd. 628, 75–80 (2015)

    Article  Google Scholar 

  22. Y. Xu et al., Theory of the single ion magnetocrystalline anisotropy of 3d ions. Phys. Status Solidi B 157(2), 685–693 (1990)

    Article  Google Scholar 

  23. A.K. Singh et al., Dielectric properties of Mn-substituted Ni–Zn ferrites. J. Appl. Phys. 91(10), 6626–6629 (2002)

    Article  Google Scholar 

  24. I. Soibam, S. Phanjoubam, L. Radhapiyari, Dielectric properties of Ni substituted Li–Zn ferrites. Phys. B 405(9), 2181–2184 (2010)

    Article  Google Scholar 

  25. V.V. Soman, V. Nanoti, D. Kulkarni, Dielectric and magnetic properties of Mg–Ti substituted barium hexaferrite. Ceram. Int. 39(5), 5713–5723 (2013)

    Article  Google Scholar 

  26. K.S. Moghaddam, A. Ataie, Role of intermediate milling in the processing of nano-size particles of barium hexaferrite via co-precipitation method. J. Alloy. Compd. 426(1), 415–419 (2006)

    Article  Google Scholar 

  27. I. Coondoo et al., Structural, dielectric and impedance spectroscopy studies in (Bi0.90 R0.10) Fe0.95Sc0.05O3 [R = La, Nd] ceramics. Ceram. Int. 40(7), 9895–9902 (2014)

    Article  Google Scholar 

  28. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32(5), 751–767 (1976)

    Article  Google Scholar 

  29. P.P. Naik et al., Influence of rare earth (Nd+3) doping on structural and magnetic properties of nanocrystalline manganese-zinc ferrite. Mater. Chem. Phys. 191, 215–224 (2017)

    Article  Google Scholar 

  30. D. Vinnik et al., Growth, structural and magnetic characterization of Co-and Ni-substituted barium hexaferrite single crystals. J. Alloy. Compd. 628, 480–484 (2015)

    Article  Google Scholar 

  31. Y. Xie et al., Synthesis and magnetic properties of BaFe11.92La(0.08–x)NdxO19 (x = 0, 0.02, 0.04, 0.06, 0.08) via gel-precursor self-propagating combustion process. J. Magn. Magn. Mater. 377, 172–175 (2015)

    Article  Google Scholar 

  32. V.C. Chavan et al., Transformation of hexagonal to mixed spinel crystal structure and magnetic properties of Co2+ substituted BaFe12O19. J. Magn. Magn. Mater. 398, 32–37 (2016)

    Article  Google Scholar 

  33. I. Ali et al., Effects of Ga–Cr substitution on structural and magnetic properties of hexaferrite (BaFe12O19) synthesized by sol–gel auto-combustion route. J. Alloy. Compd. 547, 118–125 (2013)

    Article  Google Scholar 

  34. A. Gonzalez-Angeles et al., Magnetic studies of NiSn-substituted barium hexaferrites processed by attrition milling. J. Magn. Magn. Mater. 270(1), 77–83 (2004)

    Article  Google Scholar 

  35. M.V. Rane et al., Mössbauer and FT-IR studies on non-stoichiometric barium hexaferrites. J. Magn. Magn. Mater. 192(2), 288–296 (1999)

    Article  Google Scholar 

  36. D.A. Vinnik et al., Cu-substituted barium hexaferrite crystal growth and characterization. Ceram. Int. 41(7), 9172–9176 (2015)

    Article  Google Scholar 

  37. Z. Yang et al., (Zn, Ni, Ti) substituted barium ferrite particles with improved temperature coefficient of coercivity. Mater. Sci. Eng. B 90(1), 142–145 (2002)

    Article  Google Scholar 

  38. M.J. Iqbal, M.N. Ashiq, P. Hernandez-Gomez, Effect of annealing temperature and substitution of Zr–Cu on magnetic properties of strontium hexaferrite nanoparticles. Journal of Physics: Conference Series (IOP Publishing, Bristol, 2009)

    Google Scholar 

  39. M.A. Rafiq, M.N. Rafiq, K.V. Saravanan, Dielectric and impedance spectroscopic studies of lead-free barium-calcium-zirconium-titanium oxide ceramics. Ceram. Int. 41(9), 11436–11444 (2015)

    Article  Google Scholar 

  40. M.A. Rafiq et al., Defects and charge transport in Mn-doped K0.5Na0.5NbO3 ceramics. Phys. Chem. Chem. Phys. 17(37), 24403–24411 (2015)

    Article  Google Scholar 

  41. A. Kamal et al., Structural and impedance spectroscopic studies of CuO-doped (K0.5Na0.5Nb0.995Mn0.005O3) lead-free piezoelectric ceramics. Appl. Phys. A 122, 1037 (2016)

    Article  Google Scholar 

  42. M.A. Rafiq et al., Impedance analysis and conduction mechanisms of lead free potassium sodium niobate (KNN) single crystals and polycrystals: a comparison study. Cryst. Growth Des. 15(3), 1289–1294 (2015)

    Article  Google Scholar 

  43. V.V. Soman et al., Effect of Substitution of Zn–Ti on magnetic and dielectric properties of BaFe12O19. Phys. Proc. 54, 30–37 (2014)

    Article  Google Scholar 

  44. N. Ponpandian, P. Balaya, A. Narayanasamy, Electrical conductivity and dielectric behaviour of nanocrystalline NiFe2O4 spinel. J. Phys.: Condens. Matter. 14(12), 3221 (2002)

    Google Scholar 

  45. R. Pattanayak et al., Electric transport properties study of bulk BaFe12O19 by complex impedance spectroscopy. Phys. B 474, 57–63 (2015)

    Article  Google Scholar 

  46. J.R. Macdonald, W.B. Johnson, Fundamentals of impedance spectroscopy. Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd edn. (Wiley, Hoboken, 2005), pp. 1–26

    Google Scholar 

  47. Q.K. Muhammad et al., Structural, dielectric, and impedance study of ZnO-doped barium zirconium titanate (BZT) ceramics. J. Mater. Sci. 51(22), 10048–10058 (2016)

  48. O. Raymond et al., Frequency-temperature response of ferroelectromagnetic Pb(Fe1/2Nb1/2)O3 ceramics obtained by different precursors. Part II. Impedance spectroscopy characterization. J. Appl. Phys. 97(8), 084108 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asif Rafiq.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiq, M.A., Waqar, M., Muhammad, Q.K. et al. Conduction mechanism and magnetic behavior of Cu doped barium hexaferrite ceramics. J Mater Sci: Mater Electron 29, 5134–5142 (2018). https://doi.org/10.1007/s10854-017-8477-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8477-y

Navigation