Skip to main content
Log in

Structure and refractive index of thin alumina films grown by atomic layer deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Aluminum oxide (Al2O3) is a good dielectric material for optoelectronic applications. With technologies such as atomic layer deposition (ALD), homogeneous ultrathin films of Al2O3 can be obtained at moderate temperatures. In this work, Al2O3 thin films of thickness up to 310 nm were obtained by ALD at 150 and 175 °C with trimethylaluminum and H2O as precursors. The nitrogen purging pulses were kept short (1 or 2 s) to reach the growth rate of about 0.14 nm/cycle at 150 °C and 0.15 nm/cycle at 175 °C after 800 deposition cycles. The obtained films were amorphous and showed a good homogeneity over a 2 × 2 cm2 area confirmed by optical reflectance. X-ray photoelectron spectroscopy analysis on the surface of the ALD samples indicate that films deposited at 150 °C contained more carbon-related bonds, which probably arise from incomplete surface reaction or insufficient N2 purging time. Results of spectroscopic ellipsometry (SE) reveal that the refractive indices (n) of the ALD films are systematically lower than that of crystalline α-Al2O3 in the wavelength range, 240–850 nm. Higher deposition temperature increased slightly the n values, but at the same time it also increased the roughness of the film surface. A good match between the film thicknesses estimated by SE and from the cross-sectional scanning electron microscopy images of the same group of samples confirms the effectiveness of the SE modeling to study the homogeneity of the alumina films deposited by ALD on silicon substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Leskelä, M. Ritala, Thin Solid Films 409, 138 (2002)

    Article  Google Scholar 

  2. R.L. Puurunen, J. Appl. Phys. 97, 121301 (2005)

    Article  Google Scholar 

  3. S.M. George, Chem. Rev. 110, 111 (2010)

    Article  Google Scholar 

  4. H.B. Profijt, S.E. Potts, M.C.M. van de Sanden, W.M.M. Kessels, J. Vac. Sci. Technol., A 29, 050801 (2011)

    Article  Google Scholar 

  5. V. Miikkulainen, M. Leskelä, M. Ritala, R.L. Puurunen, J. Appl. Phys. 113, 021301 (2013)

    Article  Google Scholar 

  6. W.J. Maeng, S.J. Lim, S.-J. Kwon, H. Kim, Appl. Phys. Lett. 90, 062909 (2007)

    Article  Google Scholar 

  7. H. Sharma, K. Sethi, P.M. Raj, R. Tummala, J. Mater. Sci.: Mater. Electron. 23, 528 (2012)

    Google Scholar 

  8. F. Zhang, Y.-C. Perng, J.H. Choi, T. Wu, T.-K. Chung, G.P. Carman, C. Locke, S. Thomas, S.E. Saddow, J.P. Chang, J. Appl. Phys. 109, 124109 (2011)

    Article  Google Scholar 

  9. K.J. Park, J.M. Doub, T. Gougousi, G.N. Parsons, Appl. Phys. Lett. 86, 051903 (2005)

    Article  Google Scholar 

  10. J.S. Becker, E. Kim, R.G. Gordon, Chem. Mater. 16, 3497 (2004)

    Article  Google Scholar 

  11. G. Luka, T.A. Krajewski, B.S. Witkowski, G. Wisz, I.S. Virt, E. Guziewicz, M. Godlewski, J. Mater. Sci.: Mater. Electron. 22, 1810 (2011)

    Google Scholar 

  12. J.A. van Delft, D. Garcia-Alonso, W.M.M. Kessels, Semicond. Sci. Technol. 27, 074002 (2012)

    Article  Google Scholar 

  13. P.F. Carcia, R.S. McLean, S. Hegedus, Sol. Energy Mater. Sol. Cells 94, 2375 (2010)

    Article  Google Scholar 

  14. W.J. Potscavage, S. Yoo, B. Domercq, B. Kippelen, Appl. Phys. Lett. 90, 253511 (2007)

    Article  Google Scholar 

  15. C.Y. Chang, C.T. Chou, Y.J. Lee, M.J. Chen, F.Y. Tsai, Org. Electron. 10, 1300 (2009)

    Article  Google Scholar 

  16. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, England, 2007)

    Book  Google Scholar 

  17. N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, 3a edn. (Academic Press, Boston, 1990), pp. 393–394

    Google Scholar 

  18. A. Misra, H.D. Bist, M.S. Navati, R.K. Thareja, J. Narayan, Mat. Sci. Eng. B 79, 49 (2001)

    Article  Google Scholar 

  19. T. Laha, K. Balani, A. Agarwal, S. Patil, S. Seal, Metall. Mat. Trans. A 36, 301 (2005)

    Article  Google Scholar 

  20. M.D. Groner, F.H. Fabreguette, J.W. Elam, S.M. George, Chem. Mater. 16, 639 (2004)

    Article  Google Scholar 

  21. M. Aguilar-Frutis, M. García, C. Falcony, G. Plesh, S. Jimenez-Sandoval, Thin Solid Films 389, 200–206 (2001)

    Article  Google Scholar 

  22. E. Langereis, S.B.S. Heil, H.C.M. Knoops, W. Keuning, M.C.M. van de Sanden, W.M.M. Kessels, J. Phys. D Appl. Phys. 42, 07301 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Rogelio Morán for help in setting up the ALD and for the SEM images; María Luisa Ramón for XRD measurements; Roberto Sato (CCADET-UNAM) for Raman spectra and Roberto Mora-Monroy (UNISON) for XPS analysis. Financial supports from CONACyT-México (123122-LIFyCS and 178023) and PAPPIT-UNAM (IN100613) are acknowledged. MTAG thank CONACyT and PAPIIT-UNAM for the graduate student scholarships. ERM and ZMG thank CONACyT and UNAM, respectively, for the postdoctoral scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Montiel-González.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar-Gama, M.T., Ramírez-Morales, E., Montiel-González, Z. et al. Structure and refractive index of thin alumina films grown by atomic layer deposition. J Mater Sci: Mater Electron 26, 5546–5552 (2015). https://doi.org/10.1007/s10854-014-2111-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2111-z

Keywords

Navigation