Skip to main content
Log in

Characterization and gas sensing properties of graphene/polyaniline nanocomposite with long-term stability under high humidity

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphene/polyaniline (Pani) nanocomposites (G/Pani) were prepared by in situ chemical oxidative polymerization using different (0–30 wt%) of graphene. According to the characterization, the presence of graphene in Pani matrix reduced the density of surface states and increased the defect density. The partial protonation of Pani and different wt% of graphene showed significant effect on CO2 gas sensing at room temperature and high humidity (ca. 90%). All prepared samples showed dynamic response and rapid recovery time to different concentrations of CO2. The nanocomposite with 20 wt% of graphene exhibited better protonation degree, sensitivity and reversibility to other samples. The sensor responded to 0.5 vol% CO2 gas three times bigger than Pani. The excellent long-term stability (about 18% less than the initial experiment) was obtained for the sensor based on G/Pani after 1 year, which makes it a potential candidate for application in CO2 gas sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Oho T, Tonosaki T, Isomura K, Ogura K (2002) A CO2 sensor operating under high humidity. J Electroanal Chem 522:173–178

    CAS  Google Scholar 

  2. Pandey S, Goswami KG, Nanda KK (2013) Nanocomposite based flexible ultrasensitive resistive gas sensor for chemical reactions studies. Sci Rep 3:1–6

    CAS  Google Scholar 

  3. Hashemi Karouei SF, Milani Moghaddam H (2019) P-p heterojunction of polymer/hierarchical mesoporous LaFeO3 microsphere as CO2 gas sensing under high humidity. Appl Surf Sci 479:1029–1038

    CAS  Google Scholar 

  4. Zhang J, Liu X, Neri G, Pinna N (2016) Nanostructured materials for room-temperature gas sensors. Adv Mater 28:795–831

    CAS  Google Scholar 

  5. Konwer S, Guha AK, Dolui SK (2013) Graphene oxide-filled conducting polyaniline composites as methanol-sensing materials. J Mater Sci 48:1729–1739. https://doi.org/10.1007/s10853-012-6931-z

    Article  CAS  Google Scholar 

  6. Milani Moghaddam H, Nasirian S (2014) Hydrogen gas sensing feature of polyaniline/titania (rutile) nanocomposite at environmental conditions. Appl Surf Sci 317:117–124

    CAS  Google Scholar 

  7. Hee Cho K, Yu H, Seop Lee J, Jang J (2020) Facile synthesis of palladium-decorated three-dimensional conducting polymer nanofilm for highly sensitive H2 gas sensor. J Mater Sci 55:5156–5165. https://doi.org/10.1007/s10853-020-04370-7

    Article  CAS  Google Scholar 

  8. Abdali H, Heli B, Ajji A (2019) Cellulose nanopaper cross-linked amino graphene/polyaniline sensors to detect CO2 gas at room temperature. Sensors 19:1–10

    Google Scholar 

  9. Li X, Wang G, Li X, Lu D (2004) Surface properties of polyaniline/nano-TiO2 composites. Appl Surf Sci 229:395–401. https://doi.org/10.1007/s10853-020-04370-7

    Article  CAS  Google Scholar 

  10. Cruz-Silva R, Romero-Garcia J, Angulo-Sanchez JL, Flores-Loyola E, Farias MH, Castillon FF, Diaz JA (2004) Comparative study of polyaniline cast films prepared from enzymatically and chemically synthesized polyaniline. Polym J 45:4711–4717

    CAS  Google Scholar 

  11. Molapo KM, Ndangili PM, Ajayi RF, Mbambisa G, Mailu SM, Njomo N, Masikini M, Baker P, Iwuoha EI (2012) Electronics of conjugated polymers (I): polyaniline. Int J Electrochem Sci 7:11859–11875

    CAS  Google Scholar 

  12. Takpire SR, Waghuley SA (2015) Synthesis of copolymer in PTh-co-PANi-ti system for photovoltaic application. Mater Lett 150:9–11

    CAS  Google Scholar 

  13. Bhadra J, Popelka A, Abdulkareem A, Ahmad Z, Touati F, Al-Thani N (2019) Fabrication of polyaniline-graphene/polystyrene nanocomposites for flexible gas sensors. RSC Adv 9:12496–12506

    CAS  Google Scholar 

  14. Pandey S (2016) Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: a comprehensive review. J Sci-Adv Mater Dev 1:431–453

    Google Scholar 

  15. Pandey S, Ramontj J (2016) Rapid, Facile Microwave-assisted synthesis of Xanthan gum grafted polyaniline for chemical sensor. Int J Biol Macromol 89:89–98

    CAS  Google Scholar 

  16. Wan M (2008) Conducting polymers with micro or nanometer structure. Tsinghua University Press, Beijing

    Google Scholar 

  17. Macdiarmid AG, Chiang JC, Richter AF, Epstein AJ (1987) Polyaniline: a new concept in conducting polymers. Synth Met 18:285–290

    CAS  Google Scholar 

  18. Lv C, Hu C, Luo J, Liu S, Qiao Y, Zhang Z, Song J, Shi Y, Cai J, Watanabe (2019) A recent advances in graphene-based humidity sensors. Nanomater 9:1–42

    Google Scholar 

  19. Ogura K, Shiigi H (1999a) A CO2 composite film consisting of base-type polyaniline and poly (vinyl alcohol). Electrochem Solid-State Lett 2:478–480

    CAS  Google Scholar 

  20. Wu Z, Chen X, Zhu S, Zhou Z, Yao Y, Quan W, Liu B (2013) Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens Actuator B Chem 178:485–493

    CAS  Google Scholar 

  21. Pumera M (2009) Electrochemistry of graphene: new horizons for sensing and energy storage. Chem Rec 9:211–223

    CAS  Google Scholar 

  22. Krach F, Hertel S, Waldmann D, Jobst J, Krieger M, Reshanov S, Schoner A, Weber HB (2012) A switch for epitaxial graphene electronics: utilizing the silicon carbide substrate as transistor channel. Appl Phys Lett 100:122102–122105

    Google Scholar 

  23. Tung NT, Van Khai T, Jeon M, Lee YJ, Chung H, Bang JH, Sohn D (2011) Preparation and characterization of nanocomposite based on polyaniline and graphene nanosheets. Macromol Res 19:203–208

    CAS  Google Scholar 

  24. Zhou X, Wu T, Hu B, Yang G, Han B (2010) Synthesis of graphene/polyaniline composite nanosheets mediated by polymerized ionic liquid. Chem Commun 46:3663–3665

    CAS  Google Scholar 

  25. Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, Wei F (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48:487–493

    CAS  Google Scholar 

  26. Al-Mashat L, Shin K, Kalantarzadeh K, Plessis JD, Han SH, Kojima RW, Kaner RB, Li D, Gou X, Ippolito SJ, Wlodarski W (2010) Graphene/polyaniline nanocomposite for hydrogen sensing. J Phys Chem C 114:16168–16173

    CAS  Google Scholar 

  27. Yassin Y, Mohamed AR, Abdelrazek ME, Morsi AM, Abdelghanye AM (2019) Structural investigation and enhancement of optical, electrical and thermal properties of poly (vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate)/graphene oxide nanocomposites. J Mater Res Technol 8:1111–1120

    CAS  Google Scholar 

  28. Mamma K, Siraj K, Meka N (2013) Synthesis and effect of secondary dopant on the conductivity of o polyaniline. J Polym Eng 33:785–792

    CAS  Google Scholar 

  29. Borah R, Banerjee S, Kumar A (2014) Surface functionalization effects on structural, conformational, and optical properties of polyaniline nanofibers. Synth Met 197:225–232

    CAS  Google Scholar 

  30. Tigelaar DM, Lee W, Bates KA, Saprigin A, Prigodin VN, Cao X, Nafie LA, Platz MS, Epstein AJ (2002) Role of solvent and secondary doping in polyaniline films doped with chiral camphorsulfonic acid: preparation of a chiral metal. Chem Mater 14:1430–1438

    CAS  Google Scholar 

  31. Nasirian S, Milani Moghaddam H (2014) Hydrogen gas sensing based on polyaniline/anatase titania nanocomposite. Int J Hydrogr Energy 39:630–642

    CAS  Google Scholar 

  32. Patil SV, Deshmukh PR, Lokhande CD (2011) Fabrication and liquefied petroleum gas (LPG) sensing performance of p-polyaniline/n-PbS heterojunction at room temperature. Sens Actuator B Chem 156:450–455

    CAS  Google Scholar 

  33. Lin W, Xu K, Xin M, Peng J, Xing Y, Chen M (2014) Hierarchical porous polyaniline silsesquioxane conjugated hybrids with enhanced electrochemical capacitance. RSC Adv 4:39508–39518

    CAS  Google Scholar 

  34. Nimkar SH, Agrawal SP, Kondawar SB (2015) Fabrication of electrospun nanofibers of titanium dioxide intercalated polyaniline nanocomposites for CO2 gas sensor. Procedia Mater Sci 10:572–579

    CAS  Google Scholar 

  35. Hatchett DW, Josowicz M, Janata J (1999) Acid doping of polyaniline: spectroscopic and electrochemical studies. J Phys Chem B 103:10992–10998

    CAS  Google Scholar 

  36. Dhand C, Das M, Sumana G, Srivastava AK, Pandey MK, Kim CG, Datta M, Malhotra BD (2010) Preparation, characterization and application of polyaniline nanospheres to biosensing. Nanoscale 2:747–754

    CAS  Google Scholar 

  37. Nacer B, Syed K, Roy Aashis S (2016) Micro-Raman spectroscopy and effective conductivity studies of graphene nanoplatelets/polyaniline composites. J Mater Sci Mater Electron 27:6249–6257

    Google Scholar 

  38. Kang ET, Neoh KG, Tan TC, Khor SH (1990) Structural studies of poly (p-phenyleneamine) and its oxidation. Macromolecules 23:2918–2926

    CAS  Google Scholar 

  39. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51–87

    CAS  Google Scholar 

  40. Kuo CC, Chen CH (2014) Graphene thickness-controlled photocatalysis and surface enhanced Raman scattering. Nanoscale 6:12805–12813

    CAS  Google Scholar 

  41. Li T, Wang X, Liu P, Yang B, Diao S, Gao Y (2020) Synthesis of graphene/polyaniline copolymer for solid-state supercapacitor. J Electroanal Chem 860:113908–113917

    CAS  Google Scholar 

  42. Yuan W, Li B, Li L (2011) A green synthetic approach to graphene nanosheets for hydrogen adsorption. Appl Surf Sci 257:10183–10187

    CAS  Google Scholar 

  43. Chen L, Zhao Y, Hou H, Zhang T, Liang J, Li M, Li J (2019) Development of AZ91D magnesium alloy-graphene nanoplatelets composites using thixomolding process. J Alloys Compd 778:359–374

    CAS  Google Scholar 

  44. Khasim S (2019) Polyaniline-Graphene nanoplatelet composite films with improved conductivity for high performance X-band microwave shielding applications. Results Phys 12:1073–1081

    Google Scholar 

  45. Stankovich S, Dikin A, Piner DDR, Kohlhaas AK, Kleinhammes A, Jia Y, Wu Y, Nguyen TSS, Ruoff R (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    CAS  Google Scholar 

  46. Yu H, Wang T, Wen B, Lu M, Xu Z, Zhu C, Chen Y, Xue X, Sun C, Cao M (2012) Graphene/polyaniline nano-rod arrays: synthesis and excellent electromagnetic absorption properties. J Mater Chem 22:21679–21685

    CAS  Google Scholar 

  47. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57

    CAS  Google Scholar 

  48. Akin N, Ozen Y, Efkere HI, Cakmak M, Ozcelik S (2015) Surface structure and photoluminescence properties of AZO thin films on polymer substrates. Surf Interface Anal 47:93–98

    CAS  Google Scholar 

  49. Korotcenkov G (2007) Metal oxides for solid-state gas sensors: What determines our choice? Mater Sci Eng B 139:1–23

    CAS  Google Scholar 

  50. Nimkar SH, Kondawar SB, More PS (2015) Polyaniline/TiO2 nanocomposite thin film based carbon dioxide gas sensor. Int J Res Biosci Agric Technol 12–18

  51. Waghuley SA, Yenorkar SM, Yawale SS, Yawale SP (2008) Application of chemically synthesized conducting polymer-polypyrrole as a carbon dioxide gas sensor. Sens Actuators B Chem 128:366–373

    CAS  Google Scholar 

  52. Mude KM, Mude BM, Raulkar KB, Yawale SS, Yawale SP (2017) Conducting polymer polyaniline as CO2 gas sensor. Int J Chemtech Res 10:494–500

    CAS  Google Scholar 

  53. Ogura K, Shiigi H, Oho T, Tonosaki T (2000) A CO2 sensor with polymer composites operating at ordinary temperature. J Electrochem Soc 147:4351–4355

    CAS  Google Scholar 

  54. Nyflott A, Mericer C, Minelli M, Moons E, Jarnstrom L, Lestelius M, Baschetti MG (2017) The influence of moisture content on the polymer structure of polyvinyl alcohol in dispersion barrier coatings and its effect on the mass transport of oxygen. J Coat Technol Res 14:1345–1355

    Google Scholar 

  55. Li H, Zhang W, Xu W, Zhang X (2000) Hydrogen bonding governs the elastic properties of poly (vinyl alcohol) in water: single-molecule force spectroscopic studies of PVA by AFM. Macromolecules 33:465–469

    CAS  Google Scholar 

  56. Mitra S, Banerjee S, Chakravorty D (2013) Tunneling conduction in graphene/(poly)vinyl alcohol composite. J Appl Phys 113:154314–154320

    Google Scholar 

  57. Bhadra J, Al-Thani NJ, Madi NK, Al-Maadeed AM (2013) Preparation and characterization of chemically synthesized polyaniline-polystyrene blends as a carbon dioxide gas sensor. Synth Met 181:27–36

    CAS  Google Scholar 

  58. Yang Y, Heeger AJ (1994) Polyaniline as a transparent electrode for polymer light-emitting diodes: lower operating voltage and higher efficiency. Appl Phys Lett 64:1245–1247

    CAS  Google Scholar 

  59. Cao Y, Treaty GM, Smith P, Heeger AJ (1992) Solution-cast films of polyaniline: optical-quality transparent electrodes. Appl Phys Lett 60:2711–2713

    CAS  Google Scholar 

  60. Zhang X, Yan G, Ding H, Shan Y (2007) Fabrication and photovoltaic properties of self-assembled sulfonated polyaniline/TiO2 ultrathin films. Mater Chem Phys 102:249–254

    CAS  Google Scholar 

  61. Nicolas-Debarnot D, Poncin-Epaillard F (2003) Polyaniline as a new sensitive layer for gas sensors. Anal Chim Acta 475:1–15

    CAS  Google Scholar 

  62. Ogura K, Shiigi H (1999b) A CO2 composite film consisting of base-type polyaniline and poly (vinyl alcohol). Electrochem Solid State Lett 2:478–480

    CAS  Google Scholar 

  63. Wang RX, Huang LF, Tian XY (2012) Understanding the protonation of polyaniline and polyaniline-graphene interaction. J Phys Chem C 116:13120–13126

    CAS  Google Scholar 

  64. Naidu KS, Palaniappan S (2020) Formation of PANI-PVA salt via H-bonding between PVA and PANI: aqueous coating for electrostatic discharge, sensor and corrosion. Sens Int 1:100006–100015

    Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossain Milani Moghaddam.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi Karouei, S., Milani Moghaddam, H. & Saadat Niavol, S. Characterization and gas sensing properties of graphene/polyaniline nanocomposite with long-term stability under high humidity. J Mater Sci 56, 4239–4253 (2021). https://doi.org/10.1007/s10853-020-05532-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05532-3

Navigation