Skip to main content
Log in

Fabrication of screen-printed electrodes: opportunities and challenges

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In recent times, wearable electronics, real-time sensing devices and point-of-care device applications have seen a surge in demand. This demand inherently calls for a more economic and reliable method of mass production. One such robust technique is screen printing that offers advantages in terms of being versatile, economical and easy to use. This technique has been proclaimed to be the best amongst the other additive manufacturing techniques by many research groups. This can be solely attributed to its simple equipment design, requiring a paste for printing purpose, a meshwork for housing the design and a squeegee to carry out printing through an up-and-down motion. This subsequently calls for optimising the parameters such as ink rheology, pore size of the mesh, proper choice of mesh design and motion of the squeeze in order to fabricate electrodes for desired purpose. Due to this technique’s immense potential to open up broad inroads in the domain of flexible electronics, whose concept has radically redefined the perception towards the field of electronics, a review article encompassing an elaborate description on the science and other quintessential parameters involved in this mass printing technique would prove to be extremely useful. In this purview, the review article is compartmentalised into sections encompassing discussion on the manufacturing of different kinds of inks for screen printing applications, substrates used, electrode design and pre-treatment procedures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Sheng A (1999) Review: why ancient silk is still gold: issues in Chinese textile history. pp 147–168

  2. Taleat Z, Khoshroo A (2014) Screen-printed electrodes for biosensing: a review (2008–2013). Microchim Acta. https://doi.org/10.1007/s00604-014-1181-1

    Article  Google Scholar 

  3. Fletcher S (2016) Screen-printed carbon electrodes. Adv Electrochem Sci Eng 16:425–443. https://doi.org/10.1002/9783527697489.ch12

    Article  Google Scholar 

  4. Chang J, Ge T, Sanchez-Sinencio E (2012) Challenges of printed electronics on flexible substrates. Midwest Symp Circuits Syst. https://doi.org/10.1109/MWSCAS.2012.6292087

    Article  Google Scholar 

  5. Lee T, Hur S, Kim J, Choi H (2009) EL device pad-printed on a curved surface. J Micromech Microeng. https://doi.org/10.1088/0960-1317/20/1/015016

    Article  Google Scholar 

  6. Park J-Y, Park J-S (2013) The present status and future aspects of the market for printed electronics. J Korean Inst Inf Commun Eng 17:263–272. https://doi.org/10.6109/jkiice.2013.17.2.263

    Article  Google Scholar 

  7. Priyadarshi A, Haur LJ, Murray P et al (2016) Environmental science. energy. Environ Sci 9:3687–3692. https://doi.org/10.1039/C6EE02693A

    Article  CAS  Google Scholar 

  8. Shin S, Kumar R, Roh JW et al (2017) High-performance screen-printed thermoelectric films on fabrics. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-07654-2

    Article  CAS  Google Scholar 

  9. Bandodkar AJ, Nuñez-flores R, Jia W, Wang J (2015) All-printed stretchable electrochemical devices. Adv Mater. https://doi.org/10.1002/adma.201500768

    Article  Google Scholar 

  10. Tan MJ, Owh C, Chee PL et al (2016) Biodegradable electronics: Cornerstone for sustainable electronics and transient applications. J Mater Chem C 4:5531–5558. https://doi.org/10.1039/c6tc00678g

    Article  CAS  Google Scholar 

  11. da Silva P, Neves MM, González-García MB, Hernández-Santos D, Fanjul-Bolado P (2018) Future trends in the market for electrochemical biosensing. Curr Opin Electrochem 10:107–111. https://doi.org/10.1016/j.coelec.2018.05.002

    Article  CAS  Google Scholar 

  12. Gumpu MB, Veerapandian M, Krishnan UM, Rayappan JBB (2018) Electrochemical sensing platform for the determination of arsenite and arsenate using electroactive nanocomposite electrode. Chem Eng J 351:319–327. https://doi.org/10.1016/j.cej.2018.06.097

    Article  CAS  Google Scholar 

  13. Gumpu MB, Krishnan UM, Rayappan JBB (2017) Design and development of amperometric biosensor for the detection of lead and mercury ions in water matrix—a permeability approach. Anal Bioanal Chem 409:4257–4266. https://doi.org/10.1007/s00216-017-0376-9

    Article  CAS  Google Scholar 

  14. Gumpu MB, Nesakumar N, Nagarajan S et al (2017) Design and Development of acetylthiocholine electrochemical biosensor based on zinc oxide—cerium oxide nanohybrid modified platinum electrode. Bull Environ Contam Toxicol. https://doi.org/10.1007/s00128-017-2045-2

    Article  Google Scholar 

  15. Wang J, Musameh M (2004) Carbon nanotube screen-printed electrochemical sensors. Analyst 129:1–2. https://doi.org/10.1039/b313431h

    Article  CAS  Google Scholar 

  16. Patris S, De PP, Vandeput M et al (2014) Talanta Nanoimmunoassay onto a screen printed electrode for HER2 breast cancer biomarker determination. Talanta 130:164–170. https://doi.org/10.1016/j.talanta.2014.06.069

    Article  CAS  Google Scholar 

  17. Madhurantakam S, Babu KJ, Bosco J, Rayappan B (2018) Biosensors and Bioelectronics Nanotechnology-based electrochemical detection strategies for hypertension markers. Biosens Bioelectron 116:67–80. https://doi.org/10.1016/j.bios.2018.05.034

    Article  CAS  Google Scholar 

  18. Wang J, Rivas G, Ozsoz M, et al (1997) Microfabricated electrochemical sensor for the detection of radiation-induced DNA damage. 69:1457–1460

  19. Carrara S, Shumyantseva VV, Archakov AI, Samor B (2008) Biosensors and Bioelectronics Screen-printed electrodes based on carbon nanotubes and cytochrome P450scc for highly sensitive cholesterol biosensors. Biosens Bioelectr 24:148–150. https://doi.org/10.1016/j.bios.2008.03.008

    Article  CAS  Google Scholar 

  20. Avramescu A, Noguer T, Magearu V, Marty J (2001) Chronoamperometric determination of d -lactate using screen-printed enzyme electrodes. Anal Chim Acta 433:81–88

    Article  CAS  Google Scholar 

  21. Figueredo F, Jesús González-Pabón M, Cortón E (2018) Low cost layer by layer construction of CNT/Chitosan flexible paper-based electrodes: a versatile electrochemical platform for point of care and point of need testing. Electroanalysis 30:497–508. https://doi.org/10.1002/elan.201700782

    Article  CAS  Google Scholar 

  22. Shih Y, Zen J, Yang H (2002) Determination of codeine in urine and drug formulations using a clay-modified screen-printed carbon electrode. J Pharm Biomed Anal 29:827–833

    Article  CAS  Google Scholar 

  23. Honeychurch KC, Crew A, Northall H et al (2013) Talanta The redox behaviour of diazepam ( Valium s ) using a disposable screen-printed sensor and its determination in drinks using a novel adsorptive stripping voltammetric assay Cl. Talanta 116:300–307. https://doi.org/10.1016/j.talanta.2013.05.017

    Article  CAS  Google Scholar 

  24. Gonzalez-Macia L, Morrin A, Smyth MR, Killard AJ (2010) Advanced printing and deposition methodologies for the fabrication of biosensors and biodevices. Analyst 135:845–867. https://doi.org/10.1039/b916888e

    Article  CAS  Google Scholar 

  25. Khaled E, Hassan HNA, Girgis A, Metelka R (2008) Construction of novel simple phosphate screen-printed and carbon paste ion-selective electrodes. Talanta 77:737–743. https://doi.org/10.1016/j.talanta.2008.07.018

    Article  CAS  Google Scholar 

  26. Phillips CO, Beynon DG, Hamblyn SM et al (2014) Its Effect on Performance with Application in Printed Electronics. Coatings. https://doi.org/10.3390/coatings4020356

    Article  Google Scholar 

  27. Lin H, Chang C, Hwu W, Ger M (2007) The rheological behaviors of screen-printing pastes. J Mater Process Technol 7:284–291. https://doi.org/10.1016/j.jmatprotec.2007.06.067

    Article  CAS  Google Scholar 

  28. Metters JP, Kadara RO, Banks CE (2011) MINIREVIEW New directions in screen printed electroanalytical sensors: an overview of recent developments. Analyst. https://doi.org/10.1039/c0an00894j

    Article  Google Scholar 

  29. Rao CNR, Müller A, Cheetham AK (2004) Nanomaterials – an introduction. In: The chemistry of nanomaterials. John Wiley & Sons, Ltd. pp 1–11

  30. Majid A, Bibi M (2017) Cadmium-based nanomaterials. In: Cadmium based II-VI semiconducting nanomaterials. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-68753-7_2

  31. Bernal JD, Mason J (1960) Packing of spheres: co-ordination of randomly packed spheres. Nature 188:910–911. https://doi.org/10.1038/188910a0

    Article  CAS  Google Scholar 

  32. Scott GD, Kilgour DM (1969) The density of random close packing of spheres. J Phys D Appl Phys 2:863–866. https://doi.org/10.1088/0022-3727/2/6/311

    Article  Google Scholar 

  33. Mamunya YP, Valeriy D, Lebedev E (1995) Percolation conductivity of polymer composites filled with dispersed conductive filler. Polym Compos 16:319–324. https://doi.org/10.1002/pc.750160409

    Article  CAS  Google Scholar 

  34. Bhore SS (2013) Formulation and evaluation of resistive Inks for applications in printed electronics. Master’s Thesis. pp 1–94

  35. Chen X, Wu X, Shao S et al (2017) Hybrid printing metal-mesh transparent conductive films with lower energy photonically sintered Copper / tin Ink. Sci Rep. https://doi.org/10.1038/s41598-017-13617-4

    Article  Google Scholar 

  36. Hong H, Hu J, Yan X (2019) UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags. ACS Appl Mater Interfaces 11:27318–27326. https://doi.org/10.1021/acsami.9b06432

    Article  CAS  Google Scholar 

  37. Yue C, Haiping W, Allec SI, Wong BM, Wang D-SN, Nguyen C (2018) Highly stretchy, transparent elastomer with the capability to automatically self-heal underwater

  38. Potisek SL, Davis DA, Sottos NR et al (2007) Mechanophore-linked addition polymers. J Am Chem Soc 129:13808–13809. https://doi.org/10.1021/ja076189x

    Article  CAS  Google Scholar 

  39. Cao Y, Morrissey TG, Acome E et al (2017) A Transparent, self-healing, highly stretchable ionic conductor. Adv Mater. https://doi.org/10.1002/adma.201605099

    Article  Google Scholar 

  40. Wang K, Lou Z, Wang L et al (2019) bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano. https://doi.org/10.1021/acsnano.9b03454

    Article  Google Scholar 

  41. Philip B, Jewell E, Worsley D (2016) The impact of solvent characteristics on performance and process stability of printed carbon resistive materials. J Coatings Technol Res 13:911–920. https://doi.org/10.1007/s11998-016-9802-8

    Article  CAS  Google Scholar 

  42. Liu QM, Yasunami T, Kuruda K, Okido M (2012) Preparation of Cu nanoparticles with ascorbic acid by aqueous solution reduction method. Trans Nonferrous Met Soc China 22:2198–2203. https://doi.org/10.1016/S1003-6326(11)61449-0

    Article  CAS  Google Scholar 

  43. Joyce M, Pal L, Hicks R et al (2018) Custom tailoring of conductive ink / substrate properties for increased thin film deposition of poly (dimethylsiloxane) films. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-018-9108-y

    Article  Google Scholar 

  44. Wansbrough H, Taylor D, Yuen D (2008) Printing ink technology and manufacture. New Zeal Inst Chem. https://doi.org/10.1039/c2cc17696c

    Article  Google Scholar 

  45. Hu G, Kang J, Ng LWT et al (2018) Functional inks and printing of two-dimensional materials. Chem Soc Rev 47:3265–3300. https://doi.org/10.1039/c8cs00084k

    Article  CAS  Google Scholar 

  46. Deng D, Jin Y, Cheng Y et al (2013) Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature. ACS Appl Mater Interfaces. https://doi.org/10.1021/am400480k

    Article  Google Scholar 

  47. Eun K, Chon M, Yoo T et al (2015) Microelectronics Reliability Electromechanical properties of printed copper ink film using a white flash light annealing process for flexible electronics. Microelectron Reliab. https://doi.org/10.1016/j.microrel.2014.12.015

    Article  Google Scholar 

  48. Kee S, Ka T, Ng M (2015) High-concentration copper nanoparticles synthesis process for screen-printing conductive paste on flexible substrate. J Nanoparticle Res 17:1–12. https://doi.org/10.1007/s11051-015-3277-x

    Article  CAS  Google Scholar 

  49. Joo M, Lee B, Jeong S, Lee M (2012) Comparative studies on thermal and laser sintering for highly conductive Cu fi lms printable on plastic substrate. Thin Solid Films 520:2878–2883. https://doi.org/10.1016/j.tsf.2011.11.078

    Article  CAS  Google Scholar 

  50. Perelaer BJ, De Gans B, Schubert US (2006) Ink-jet Printing and Microwave Sintering of Conductive Silver Tracks. Adv Mater. https://doi.org/10.1002/adma.200502422

    Article  Google Scholar 

  51. Manuscript A (2016). Mater Chem C. https://doi.org/10.1039/C6TC00628K

    Article  Google Scholar 

  52. Kim Y, Lee B, Yang S et al (2012) Use of copper ink for fabricating conductive electrodes and RFID antenna tags by screen printing. Curr Appl Phys 12:473–478. https://doi.org/10.1016/j.cap.2011.08.003

    Article  Google Scholar 

  53. Shin D, Woo S, Yem H, et al (2014) A self-reducible and alcohol-soluble copper-based metal—organic decomposition ink for printed electronics

  54. Yabuki A, Arrif N, Yanase M (2011) Low-temperature synthesis of copper conductive fi lm by thermal decomposition of copper—amine complexes. Thin Solid Films 519:6530–6533. https://doi.org/10.1016/j.tsf.2011.04.112

    Article  CAS  Google Scholar 

  55. Online VA, Korada A, Ps K, Singh SP (2015). RSC Adv. https://doi.org/10.1039/C5RA12013F

    Article  Google Scholar 

  56. Schuppert AK inkjet fabrication of copper patterns for flexible electronics: using paper with active precoatings. pp 1–35

  57. Liu Y, Zhang W, Yu H et al (2018) A concise and antioxidative method to prepare copper conductive inks in a two-phase water/xylene system for printed electronics. Chem Phys Lett 708:28–31. https://doi.org/10.1016/j.cplett.2018.07.057

    Article  CAS  Google Scholar 

  58. Goulet PJG, Lennox RB (2010) New insights into Brust-Schiffrin metal nanoparticle synthesis. J Am Chem Soc 132:9582–9584. https://doi.org/10.1021/ja104011b

    Article  CAS  Google Scholar 

  59. Abhinav KV, Rao RVK, Karthik PS, Singh SP (2015) Copper conductive inks: Synthesis and utilization in flexible electronics. RSC Adv 5:63985–64030. https://doi.org/10.1039/c5ra08205f

    Article  Google Scholar 

  60. Shen W, Zhang X, Huang Q et al (2014) Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale 6:1622–1628. https://doi.org/10.1039/c3nr05479a

    Article  CAS  Google Scholar 

  61. Yang W, Wang C (2016) Graphene and the related conductive inks for flexible electronics. J Mater Chem C 4:7193–7207. https://doi.org/10.1039/C6TC01625A

    Article  CAS  Google Scholar 

  62. Chou N, Kim Y, Kim S (2016) A method to pattern silver nanowires directly on wafer-scale PDMS substrate and its applications. ACS Appl Mater Interfaces 8:6269–6276. https://doi.org/10.1021/acsami.5b11307

    Article  CAS  Google Scholar 

  63. Hemmati S, Barkey DP, Gupta N, Banfield R (2015) Synthesis and characterization of silver nanowire suspensions for printable conductive media. ECS J Solid State Sci Technol 4:P3075–P3079. https://doi.org/10.1149/2.0121504jss

    Article  CAS  Google Scholar 

  64. Thouti E, Chander N, Dutta V, Komarala VK (2013) Optical properties of Ag nanoparticle layers deposited on silicon substrates. J Opt (United Kingdom). https://doi.org/10.1088/2040-8978/15/3/035005

    Article  Google Scholar 

  65. Christy AJ, Umadevi M (2012) Synthesis and characterization of monodispersed silver nanoparticles. Adv Nat Sci Nanosci Nanotechnol. https://doi.org/10.1088/2043-6262/3/3/035013

    Article  Google Scholar 

  66. Ding J, Liu J, Tian Q et al (2016) Preparing of highly conductive patterns on flexible substrates by screen printing of silver nanoparticles with different size distribution. Nanoscale Res Lett 11:1–8. https://doi.org/10.1186/s11671-016-1640-1

    Article  CAS  Google Scholar 

  67. Yu D-G (2007) Formation of colloidal silver nanoparticles stabilized by Na+–poly(γ-glutamic acid)–silver nitrate complex via chemical reduction process. Colloids Surf B Biointerfaces 59:171–178. https://doi.org/10.1016/J.COLSURFB.2007.05.007

    Article  CAS  Google Scholar 

  68. Harpeness R, Gedanken A (2004) Microwave synthesis of core - shell gold / palladium bimetallic nanoparticles. pp 3431–3434

  69. Dar L (2000) Silver Nanoparticles by PAMAM-Assisted photochemical reduction of Ag+. J Colloid Interface Sci 553:550–553. https://doi.org/10.1006/jcis.2000.7011

    Article  CAS  Google Scholar 

  70. Park BK, Jeong S, Kim D et al (2007) Synthesis and size control of monodisperse copper nanoparticles by polyol method. J Colloid Interface Sci 311:417–424. https://doi.org/10.1016/j.jcis.2007.03.039

    Article  CAS  Google Scholar 

  71. Sun J, Jing Y, Jia Y et al (2005) Mechanism of preparing ultrafine copper powder by polyol process. Mater Lett 59:3933–3936. https://doi.org/10.1016/j.matlet.2005.07.036

    Article  CAS  Google Scholar 

  72. Wang Z, Liang X, Zhao T et al (2017) Facile synthesis of monodisperse silver nanoparticles for screen printing conductive inks. J Mater Sci Mater Electron 28:16939–16947. https://doi.org/10.1007/s10854-017-7614-y

    Article  CAS  Google Scholar 

  73. Hyun WJ, Lim S, Ahn BY et al (2015) Screen Printing of Highly Loaded Silver Inks on Plastic Substrates Using Silicon Stencils. ACS Appl Mater Interfaces 7:12619–12624. https://doi.org/10.1021/acsami.5b02487

    Article  CAS  Google Scholar 

  74. Al-Hardan N, Abdullah MJ, Abdul Aziz A, Ahmad H (2010) Low operating temperature of oxygen gas sensor based on undoped and Cr-doped ZnO films. Appl Surf Sci 256:3468–3471. https://doi.org/10.1016/j.apsusc.2009.12.055

    Article  CAS  Google Scholar 

  75. Tiburcio-Silver A, Sánchez-Juárez A (2004) SnO2: Ga thin films as oxygen gas sensor. Mater Sci Eng B Solid-State Mater Adv Technol 110:268–271. https://doi.org/10.1016/j.mseb.2004.02.013

    Article  CAS  Google Scholar 

  76. Diéguez A, Romano-Rodríguez A, Morante JR et al (1996) Morphological analysis of nanocrystalline SnO2 for gas sensor applications. Sens Actuators B Chem 31:1–8. https://doi.org/10.1016/0925-4005(96)80007-4

    Article  Google Scholar 

  77. Zheng L, Xu M, Xu T (2000) TiO2-x thin films as oxygen sensor. Sens Actuators B Chem 66:28–30. https://doi.org/10.1016/S0925-4005(99)00447-5

    Article  CAS  Google Scholar 

  78. Lu CY, Chang SP, Chang SJ (2008) ZnO nanowire-based oxygen gas sensor. 2008 IEEE Int Conf Electron Devices Solid-State Circuits. EDSSC 9:485–489. https://doi.org/10.1109/EDSSC.2008.4760698

    Article  Google Scholar 

  79. Ganbavle VV, Inamdar SI, Agawane GL et al (2016) Synthesis of fast response, highly sensitive and selective Ni:ZNO based NO2 sensor. Chem Eng J 286:36–47. https://doi.org/10.1016/j.cej.2015.10.052

    Article  CAS  Google Scholar 

  80. Tan CH, Tan ST, Lee HB et al (2017) Automated room temperature optical absorbance CO sensor based on In-doped ZnO nanorod. Sens Actuators B Chem 248:140–152. https://doi.org/10.1016/j.snb.2017.02.161

    Article  CAS  Google Scholar 

  81. Kim SP, Choi HC (2015) Reusable hydrazine amperometric sensor based on Nafion®-coated TiO2-carbon nanotube modified electrode. Sens Actuators B Chem 207:424–429. https://doi.org/10.1016/j.snb.2014.10.029

    Article  CAS  Google Scholar 

  82. Ismail AA, Harraz FA, Faisal M et al (2016) A sensitive and selective amperometric hydrazine sensor based on mesoporous Au/ZnO nanocomposites. Mater Des 109:530–538. https://doi.org/10.1016/j.matdes.2016.07.107

    Article  CAS  Google Scholar 

  83. Miao YE, He S, Zhong Y et al (2013) A novel hydrogen peroxide sensor based on Ag/SnO2 composite nanotubes by electrospinning. Electrochim Acta 99:117–123. https://doi.org/10.1016/j.electacta.2013.03.063

    Article  CAS  Google Scholar 

  84. Gholivand MB, Akbari A, Faizi M, Jafari F (2017) Introduction of a simple sensing device for monitoring of hydrogen peroxide based on ZnFe2O4 nanoparticles/chitosan modified gold electrode. J Electroanal Chem 796:17–23. https://doi.org/10.1016/j.jelechem.2017.05.004

    Article  CAS  Google Scholar 

  85. Wang F, Hu S (2009) Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim Acta 165:1–22. https://doi.org/10.1007/s00604-009-0136-4

    Article  CAS  Google Scholar 

  86. Pang X, Qi J, Zhang Y et al (2016) Ultrasensitive photoelectrochemical aptasensing of miR-155 using efficient and stable CH3NH3PbI3 quantum dots sensitized ZnO nanosheets as light harvester. Biosens Bioelectron 85:142–150. https://doi.org/10.1016/j.bios.2016.04.099

    Article  CAS  Google Scholar 

  87. Picciolini S, Castagnetti N, Vanna R et al (2015) Branched gold nanoparticles on ZnO 3D architecture as biomedical SERS sensors. RSC Adv 5:93644–93651. https://doi.org/10.1039/c5ra13280k

    Article  CAS  Google Scholar 

  88. Huang Q, Li J, Wei W et al (2017) Synthesis, characterization and application of TiO2/Ag recyclable SERS substrates. RSC Adv 7:26704–26709. https://doi.org/10.1039/c7ra03112b

    Article  CAS  Google Scholar 

  89. George JM, Antony A, Mathew B (2018) Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchim Acta. https://doi.org/10.1007/s00604-018-2894-3

    Article  Google Scholar 

  90. Khan MM, Adil SF, Al-Mayouf A (2015) Metal oxides as photocatalysts. J Saudi Chem Soc 19:462–464. https://doi.org/10.1016/j.jscs.2015.04.003

    Article  Google Scholar 

  91. Pérez-Tomás A, Mingorance A, Tanenbaum D, Lira-Cantú M (2018) Metal Oxides in photovoltaics: all-oxide, ferroic, and perovskite solar cells. Elsevier, Amsterdam

    Google Scholar 

  92. Bhattacharya P, Fornari R, Kamimura H (2011) Comprehensive semiconductor science and technology. Compr Semicond Sci Technol 1–6:1–647. https://doi.org/10.1016/c2009-1-28364-x

    Article  Google Scholar 

  93. Allaker RP (2012) Nanoparticles and the control of oral biofilms. Elsevier, Amsterdam

    Google Scholar 

  94. Ren G, Hu D, Cheng EWC et al (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590. https://doi.org/10.1016/j.ijantimicag.2008.12.004

    Article  CAS  Google Scholar 

  95. Zhang H, Zhu Q, Zhang Y et al (2007) One-pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties. Adv Funct Mater 17:2766–2771. https://doi.org/10.1002/adfm.200601146

    Article  CAS  Google Scholar 

  96. Poizot P, Laruelle S, Grugeon S et al (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499. https://doi.org/10.1038/35035045

    Article  CAS  Google Scholar 

  97. Cho WS, Thielbeer F, Duffin R et al (2014) Surface functionalization affects the zeta potential, coronal stability and membranolytic activity of polymeric nanoparticles. Nanotoxicology 8:202–211. https://doi.org/10.3109/17435390.2013.773465

    Article  CAS  Google Scholar 

  98. Xiong J, Wang Y, Xue Q, Wu X (2011) Synthesis of highly stable dispersions of nanosized copper particles using l-ascorbic acid. Green Chem 13:900–904. https://doi.org/10.1039/c0gc00772b

    Article  CAS  Google Scholar 

  99. Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108:2482–2505. https://doi.org/10.1021/cr068069y

    Article  CAS  Google Scholar 

  100. Choudhry NA, Kampouris DK, Kadara RO et al (2009) Next generation screen printed electrochemical platforms: Non-enzymatic sensing of carbohydrates using copper(ii) oxide screen printed electrodes. Anal Methods 1:183–187. https://doi.org/10.1039/b9ay00095j

    Article  CAS  Google Scholar 

  101. Kiattipoomchai M (1998) Measurement of sulfite at oxide-coated copper electrodes. Analyst 123:2017–2019. https://doi.org/10.1039/a804554b

    Article  CAS  Google Scholar 

  102. Šljukić B, Banks CE, Crossley A, Compton RG (2007) Copper oxide - Graphite composite electrodes: application to nitrite sensing. Electroanalysis 19:79–84. https://doi.org/10.1002/elan.200603708

    Article  CAS  Google Scholar 

  103. Xu JZ, Zhu JJ, Wang H, Chen HY (2003) Nano-sized copper oxide modified carbon paste electrodes as an amperometric sensor for amikacin. Anal Lett 36:2723–2733. https://doi.org/10.1081/AL-120025251

    Article  CAS  Google Scholar 

  104. Tolod KR, Hernández S, Quadrelli EA, Russo N (2019) Visible light-driven catalysts for water oxidation: towards solar fuel biorefineries. Stud Surf Sci Catal 178:65–84. https://doi.org/10.1016/B978-0-444-64127-4.00004-5

    Article  CAS  Google Scholar 

  105. Cole B, Marsen B, Miller E et al (2008) Evaluation of nitrogen doping of tungsten oxide for photoelectrochemical water splitting. J Phys Chem C 112:5213–5220. https://doi.org/10.1021/jp077624c

    Article  CAS  Google Scholar 

  106. Garde AS (2016) Gas sensing properties of WO 3 thick film resistors prepared by screen printing technique. Int J Chem Phys Sci 5:1–13

    CAS  Google Scholar 

  107. Rodríguez-Pérez M, Rodríguez-Gutiérrez I, Vega-Poot A et al (2017) Charge transfer and recombination kinetics at WO3 for photoelectrochemical water oxidation. Electrochim Acta 258:900–908. https://doi.org/10.1016/j.electacta.2017.11.140

    Article  CAS  Google Scholar 

  108. Liang X, He Y, Liu F et al (2007) Solid-state potentiometric H2S sensor combining NASICON with Pr6O11-doped SnO2 electrode. Sens Actuators B Chem 125:544–549. https://doi.org/10.1016/j.snb.2007.02.050

    Article  CAS  Google Scholar 

  109. Liang X, Zhong T, Quan B et al (2008) Solid-state potentiometric SO2 sensor combining NASICON with V2O5-doped TiO2 electrode. Sensors Actuators, B Chem 134:25–30. https://doi.org/10.1016/j.snb.2008.04.003

    Article  CAS  Google Scholar 

  110. Boudiba A, Zhang C, Bittencourt C et al (2012) SO2 gas sensors based on WO3 nanostructures with different morphologies. Procedia Eng 47:1033–1036. https://doi.org/10.1016/j.proeng.2012.09.326

    Article  CAS  Google Scholar 

  111. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by metal oxides. Adsorpt Powders Porous Solids. https://doi.org/10.1016/b978-012598920-6/50011-7

    Article  Google Scholar 

  112. McKeen LW (2013) Introduction to plastics and polymers compositions. Eff UV Light Weather Plast Elastomers. https://doi.org/10.1016/b978-1-4557-2851-0.00001-3

    Article  Google Scholar 

  113. He X, Hu C (2011) Building three-dimensional Pt catalysts on TiO2 nanorod arrays for effective ethanol electrooxidation. J Power Sources 196:3119–3123. https://doi.org/10.1016/j.jpowsour.2010.12.001

    Article  CAS  Google Scholar 

  114. Green M, Emery K, Hishikawa Y et al (2012) Solar cell efficiency tables (version 40). Ieee Trans Fuzzy Syst 20:1114–1129. https://doi.org/10.1002/pip

    Article  Google Scholar 

  115. Iijima S (1991) © 19 9 1 Nature publishing group. Nature 354:56–58

    Article  CAS  Google Scholar 

  116. Tsoukleris DS, Arabatzis IM, Chatzivasiloglou E et al (2005) 2-Ethyl-1-hexanol based screen-printed titania thin films for dye-sensitized solar cells. Sol Energy 79:422–430. https://doi.org/10.1016/j.solener.2005.02.017

    Article  CAS  Google Scholar 

  117. Wang ZS, Yamaguchi T, Sugihara H, Arakawa H (2005) Significant efficiency improvement of the black dye-sensitized solar cell through protonation of TiO2 films. Langmuir 21:4272–4276. https://doi.org/10.1021/la050134w

    Article  CAS  Google Scholar 

  118. Fan K, Liu M, Peng T et al (2010) Effects of paste components on the properties of screen-printed porous TiO2 film for dye-sensitized solar cells. Renew Energy 35:555–561. https://doi.org/10.1016/j.renene.2009.07.010

    Article  CAS  Google Scholar 

  119. Bendoni R, Sangiorgi N, Sangiorgi A, Sanson A (2015) Role of water in TiO2 screen-printing inks for dye-sensitized solar cells. Sol Energy 122:497–507. https://doi.org/10.1016/j.solener.2015.09.025

    Article  CAS  Google Scholar 

  120. Hossain MF, Hossain MI (2015) Textile-wasted water cleaning by handmade screen printed TiO 2 nanoparticles. 2nd International Conference on Electrical Engineering and Information Communication Technology (iCEEiCT) pp 21–23. Doi: https://doi.org/10.1109/ICEEICT.2015.7307406

  121. Wali Q, Jose R (2019) SnO2 dye-sensitized solar cells

  122. Venkatanarayanan A, Spain E (2014) Review of recent developments in sensing materials. Elsevier, Amsterdam

    Book  Google Scholar 

  123. Garje AD, Aiyer RC (2006) Electrical and gas-sensing properties of a thick film resistor of nanosized SnO2 with variable percentage of permanent binder. Int J Appl Ceram Technol 3:477–484. https://doi.org/10.1111/j.1744-7402.2006.02111.x

    Article  CAS  Google Scholar 

  124. Viter R, Iatsunskyi I (2019) Metal oxide nanostructures in sensing. Elsevier, Amsterdam

    Book  Google Scholar 

  125. Luthra V, Singh A, Pugh DC, Parkin IP (2016) Ethanol sensing characteristics of Zn0.99M0.01O (M = Al/Ni) nanopowders. Phys Status Solidi Appl Mater Sci 213:203–209. https://doi.org/10.1002/pssa.201532447

    Article  CAS  Google Scholar 

  126. Hrytsenko O, Hrytsenko D, Shvalagin V et al (2017) The influence of parameters of ink-jet printing on photoluminescence properties of nanophotonic labels based on Ag nanoparticles for smart packaging. J Nanomater. https://doi.org/10.1155/2017/3485968

    Article  Google Scholar 

  127. Macias-Montero M, Peláez RJ, Rico VJ et al (2015) Laser treatment of Ag@ZnO nanorods as long-life-span SERS surfaces. ACS Appl Mater Interfaces 7:2331–2339. https://doi.org/10.1021/am506622x

    Article  CAS  Google Scholar 

  128. Cui S, Dai Z, Tian Q et al (2016) Wetting properties and SERS applications of ZnO/Ag nanowire arrays patterned by a screen printing method. J Mater Chem C 4:6371–6379. https://doi.org/10.1039/c6tc00714g

    Article  CAS  Google Scholar 

  129. Karlsson HL, Toprak MS, Fadeel B (2015) Toxicity of Metal and Metal Oxide Nanoparticles, Fourth edition. Elsevier, Amsterdam

    Google Scholar 

  130. Ghaffar FA, Vaseem M, Roy L, Shamim A (2018) Design and fabrication of a frequency and polarization reconfigurable microwave antenna on a printed partially magnetized ferrite substrate. IEEE Trans Antennas Propag 66:4866–4871. https://doi.org/10.1109/TAP.2018.2846796

    Article  Google Scholar 

  131. Gornall DD, Collyer SD, Higson SPJ (2009) Investigations into the use of screen-printed carbon electrodes as templates for electrochemical sensors and sonochemically fabricated microelectrode arrays. Sens Actuators B Chem 141:581–591. https://doi.org/10.1016/j.snb.2009.06.051

    Article  CAS  Google Scholar 

  132. Science-poland M (2015) Graphene synthesis: a review. Mater Sci Pol. https://doi.org/10.1515/msp-2015-0079

    Article  Google Scholar 

  133. Hernandez Y, Nicolosi V, Lotya M, et al High-yield production of graphene by liquid-phase exfoliation of graphite. pp 563–568. Doi: https://doi.org/10.1038/nnano.2008.215

  134. Vallés C, Drummond C, Saadaoui H et al (2008) Solutions of negatively charged graphene sheets and ribbons. J Am Chem Soc 130:15802–15804. https://doi.org/10.1021/ja808001a

    Article  CAS  Google Scholar 

  135. Khan U, Neill AO, Lotya M et al (2010) High-concentration Solvent exfoliation of graphene. Small. https://doi.org/10.1002/smll.200902066

    Article  Google Scholar 

  136. Hasan T, Torrisi F, Sun Z et al (2010) Solid 2957:2953–2957. https://doi.org/10.1002/pssb.201000339

    Article  CAS  Google Scholar 

  137. Hernandez Y, Lotya M, Rickard D et al (2010) Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 3:3208–3213. https://doi.org/10.1021/la903188a

    Article  CAS  Google Scholar 

  138. Bourlinos AB, Georgakilas V, Zboril R et al (1841) Liquid-phase exfoliation of graphite towards solubilized graphenes. Small. https://doi.org/10.1002/smll.200900242

    Article  Google Scholar 

  139. Nascentes CC, Korn M, Sousa CS, Arruda MAZ (2001) Use of ultrasonic baths for analytical applications: a new approach for optimisation conditions. J Braz Chem Soc 12:57–63

    Article  CAS  Google Scholar 

  140. Zhu BY, Murali S, Cai W et al (2010) Graphene and graphene Oxide: Synthesis. Prop Appl. https://doi.org/10.1002/adma.201001068

    Article  Google Scholar 

  141. Parviz D, Irin F, Shah SA et al (2016) Challenges in liquid-phase exfoliation, processing, and assembly of pristine graphene. Adv Mater 28:8796–8818. https://doi.org/10.1002/adma.201601889

    Article  CAS  Google Scholar 

  142. Liu B, Salgado S, Maheshwari V, Liu J (2016) DNA adsorbed on graphene and graphene oxide: fundamental interactions, desorption and applications. Curr Opin Colloid Interface Sci 26:41–49. https://doi.org/10.1016/j.cocis.2016.09.001

    Article  CAS  Google Scholar 

  143. Secor EB (2017) Graphene inks with cellulosic dispersants: development and applications for printed electronics

  144. Khan S, Lorenzelli L, Dahiya R, Member S (2014) Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens J. https://doi.org/10.1109/JSEN.2014.2375203

    Article  Google Scholar 

  145. Karagiannidis PG, Hodge SA, Lombardi L et al (2017) Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano 11:2742–2755. https://doi.org/10.1021/acsnano.6b07735

    Article  CAS  Google Scholar 

  146. Debutts EH, Hudy JA, Elliott JH (1957) Rheology of sodium carboxymethylcellulose solutions. Ind Eng Chem 49:94–98. https://doi.org/10.1021/ie50565a034

    Article  CAS  Google Scholar 

  147. Hyun WJ, Secor EB, Hersam MC et al (2014) High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics communication. Adv Mater. https://doi.org/10.1002/adma.201404133

    Article  Google Scholar 

  148. Secor EB, Lim S, Zhang H et al (2014) Gravure printing of graphene for large-area flexible electronics. Adv Mater. https://doi.org/10.1002/adma.201401052

    Article  Google Scholar 

  149. An BW, Kim K, Lee H et al (2015) High-resolution printing of 3D structures using an electrohydrodynamic inkjet with multiple functional inks. Adv Mater 27:4322–4328. https://doi.org/10.1002/adma.201502092

    Article  CAS  Google Scholar 

  150. Overgaard MH, Kühnel M, Hvidsten R et al (2017) Highly conductive semitransparent graphene circuits screen-printed from water-based graphene oxide ink. Adv Mater Technol 1700011:1–7. https://doi.org/10.1002/admt.201700011

    Article  CAS  Google Scholar 

  151. Meyer JC, Sundaram RS, Chuvilin A et al (2010) Atomic structure of reduced graphene oxide cristina go. Nano Lett. https://doi.org/10.1021/nl9031617

    Article  Google Scholar 

  152. Tour JM (2012) Pristine graphite oxide. J Am Chem Soc 134(5):2815–2822

    Article  Google Scholar 

  153. Eigler S, Enzelberger-heim M, Grimm S et al (2013) Wet Chemical Synthesis of Graphene. Adv Mater. https://doi.org/10.1002/adma.201300155

    Article  Google Scholar 

  154. Inks C (2010) ( 12 ) Patent Application Publication ( 10 ) Pub . No.: US 2010/0000441 A1 Sheet resistivity of inkjet printed inks Number of printing passes ( overwrites ). p 1

  155. Liu C, Alwarappan S, Chen Z et al (2010) Membraneless enzymatic biofuel cells based on graphene nanosheets. Biosens Bioelectron 25:1829–1833. https://doi.org/10.1016/j.bios.2009.12.012

    Article  CAS  Google Scholar 

  156. Wang X, Zhi L, Mu K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8(1):323–327

    Article  CAS  Google Scholar 

  157. Links DA (2012) The ohmic resistance effect for characterisation of carbon nanotube paste. RSC Adv. https://doi.org/10.1039/c2ra20202f

    Article  Google Scholar 

  158. Wang J, Musameh M, Lin Y (2003) Ja028951V.Pdf. pp 2408–2409

  159. Wang J, Musameh M (2003) Carbon nanotube/teflon composite electrochemical sensors and biosensors. Anal Chem 75:2075–2079

    Article  CAS  Google Scholar 

  160. Wang J, Tian B, Nascimento VB, Angnes L (1998) Performance of screen-printed carbon electrodes fabricated from different carbon inks. Electrochim Acta 43:3459–3465. https://doi.org/10.1016/S0013-4686(98)00092-9

    Article  CAS  Google Scholar 

  161. Campuzano S, Paloma Y, Pingarr M (2019) Carbon dots and graphene quantum dots in electrochemical biosensing. Nanomaterials 9(4):634

    Article  CAS  Google Scholar 

  162. Siddique AB, Pratap Singh V, Chatterjee S et al (2018) Facile synthesis and versatile applications of amorphous carbon dot. Mater Today Proc 5:10077–10083. https://doi.org/10.1016/j.matpr.2017.11.002

    Article  CAS  Google Scholar 

  163. Saadati A, Hassanpour S, Hasanzadeh M, Shadjou N (2020) Binding of pDNA with cDNA using hybridization strategy towards monitoring of Haemophilus in fl uenza genome in human plasma samples. Int J Biol Macromol 150:218–227

    Article  CAS  Google Scholar 

  164. Li Y (2017) Clean and sustainable society. ACS Nano 3:1–7. https://doi.org/10.1007/978-3-319-16862-3

    Article  Google Scholar 

  165. Weng B, Shepherd RL, Crowley K et al (2010) Printing conducting polymers. Analyst 135:2779–2789. https://doi.org/10.1039/c0an00302f

    Article  CAS  Google Scholar 

  166. Bhandari S (2018) Chapter 2 - Polyaniline: Structure and Properties Relationship. Elsevier, Amsterdam

    Google Scholar 

  167. Blends P (2018) 11.1 Introduction. pp 279–303

  168. Manuscript A (2015). Mater Chem C. https://doi.org/10.1039/C5TC03080C

    Article  Google Scholar 

  169. Xu Y, Schwab MG, Strudwick AJ, Hennig I (2013) Screen-printable thin film supercapacitor device utilizing graphene / polyaniline inks. Adv Energy Mater. https://doi.org/10.1002/aenm.201300184

    Article  Google Scholar 

  170. Peng J, Jin W, Zhenyu C (2016) Advanced nanomaterial inks for screen-printed chemical sensors. Sens Actuators B Chem. https://doi.org/10.1016/j.snb.2016.12.022

    Article  Google Scholar 

  171. Quirós-solano WF, Gaio N, Silvestri C et al (2016) PEDOT: PSS: a conductive and flexible polymer for sensor integration in organ-on-chip platforms. Procedia Eng 168:1184–1187. https://doi.org/10.1016/j.proeng.2016.11.401

    Article  CAS  Google Scholar 

  172. Zhou L, Yu M, Chen X et al (2018) Poly ( Styrenesulfonate ) grids as ITO-free anodes for flexible organic light-emitting diodes. Adv Funct Mater 1705955:1–7. https://doi.org/10.1002/adfm.201705955

    Article  CAS  Google Scholar 

  173. Macdiarmid AG, Epstein AJ (1995) Macromol Symp 98:835–842

    Article  CAS  Google Scholar 

  174. Honda W, Harada S, Arie T et al (2014) Printed wearable temperature sensor for health monitoring. pp 31–33

  175. Deshmukh K, Ahamed MB, Deshmukh RR et al (2017) 3-Biopolymer composites with high dielectric performance: interface engineering. Elsevier, Amsterdam

    Google Scholar 

  176. Zhou X, Chen GZ (2012) Electrochemical performance of screen—printed composite coatings of conducting polymers and carbon nanotubes on titanium bipolar plates in aqueous asymmetrical supercapacitors abstract. J. Electrochem 18(6):548–565

    CAS  Google Scholar 

  177. Alford NM, Penn SJ, Mcn N, Penn SJ (1996) Sintered alumina with low dielectric loss Sintered alumina with low dielectric loss. J Appl Phys 80(10):5895–5898. https://doi.org/10.1063/1.363584

    Article  CAS  Google Scholar 

  178. Licari JJ, Enlow LR (1998) Thick film processes. In: Hybrid microcircuit technology handbook, 2nd edn. William Andrew Publishing, Westwood, NJ. pp 104–171

  179. Jayapalan II, Manoj N, Mailadil RV (2016) Low cost room temperature curable alumina ink for printed electronic applications. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-016-5058-4

    Article  Google Scholar 

  180. Shi J, Guo CX, Chan-Park MB, Li CM (2012) All-printed carbon nanotube finFETs on plastic substrates for high-performance flexible electronics. Adv Mater 24:358–361. https://doi.org/10.1002/adma.201103674

    Article  CAS  Google Scholar 

  181. Chem JM, Zhao J, Gao Y et al (2012) Fabrication and electrical properties of all-printed carbon nanotube thin film transistors on flexible substrates. J Mater Chem. https://doi.org/10.1039/c2jm34598f

    Article  Google Scholar 

  182. Ramesh S, Shutzberg BA, Huang CC et al (2003) Dielectric nanocomposites for integral thin film capacitors: materials design. Fabr Integr Issues 26:17–24

    CAS  Google Scholar 

  183. Jung S, Baeg K, Yoon S et al (2012) Low-voltage-operated top-gate polymer thin-film transistors with high capacitance poly (vinylidene fluoride-trifluoroethylene)/poly (methyl methacrylate ) dielectrics Low-voltage-operated top-gate polymer thin-film transistors with high capacitance po. J Appl Phys. Doi 10(1063/1):3511697

    Google Scholar 

  184. Hou X, Xia Y, Ng SC et al (2014) Formulation of novel screen-printable dielectric ink for fully-printed TIPs-pentacene OFETs. RSC Adv 4:37687–37690. https://doi.org/10.1039/c4ra06931e

    Article  CAS  Google Scholar 

  185. Pullanchiyodan A, Surendran KP (2016a) Formulation of sol-gel derived bismuth silicate dielectric ink for flexible electronics applications Formulation of sol-gel derived bismuth silicate dielectric ink for flexible electronics applications. Ind Eng Chem Res. https://doi.org/10.1021/acs.iecr.6b00871

    Article  Google Scholar 

  186. Thomas M (2014) RSC Adv 4:47701–47707. https://doi.org/10.1039/C4RA06479H

    Article  CAS  Google Scholar 

  187. Coughenour PEI (1988) United States Patent (19)

  188. Un JS, Heng CC, Iao YL (2015) Screen printed paper-based diagnostic devices with polymeric inks. Anal Sci 31(3):145–151

    Article  Google Scholar 

  189. Khaled E, Mohamed GG, Awad T (2008) Disposal screen-printed carbon paste electrodes for the potentiometric titration of surfactants. Sens Actuators B Chem 135:74–80. https://doi.org/10.1016/j.snb.2008.07.027

    Article  CAS  Google Scholar 

  190. Secor EB, Gao TZ, Islam AE et al (2017) Enhanced conductivity, adhesion, and environmental stability of printed graphene inks with nitrocellulose. Chem Mater 29:2332–2340. https://doi.org/10.1021/acs.chemmater.7b00029

    Article  CAS  Google Scholar 

  191. Garate O, Veiga L, Medrano AV et al (2018) Waterborne carbon nanotube ink for the preparation of electrodes with applications in electrocatalysis and enzymatic biosensing. Mater Res Bull 106:137–143. https://doi.org/10.1016/j.materresbull.2018.05.015

    Article  CAS  Google Scholar 

  192. Islam R, Khair N, Ahmed DM, Shahariar H (2018) Fabrication of low cost and scalable carbon-based conductive ink for E-textile applications. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2018.12.009

    Article  Google Scholar 

  193. Pullanchiyodan A, Surendran KP (2016b) Formulation of sol-gel derived bismuth silicate dielectric ink for flexible electronics applications. Ind Eng Chem Res 55:7108–7155. https://doi.org/10.1021/acs.iecr.6b00871

    Article  CAS  Google Scholar 

  194. Mitchell TE, Lagerlöf KPD, Heuer AH (1985) Dislocations in ceramics. Mater Sci Technol (United Kingdom) 1:944–949. https://doi.org/10.1179/mst.1985.1.11.944

    Article  CAS  Google Scholar 

  195. Ursic H, Khomyakova E, Drnovsek S, Malic B (2016) Screen-printed Pb (Mg, Nb) O3–PbTiO3 thick films on ceramic substrates for sensor applications. In: 2016 international conference and exposition on electrical and power engineering (EPE), pp 55–58. https://doi.org/10.1109/ICEPE.2016.7781302

  196. Zhang R, Wang B, Zhu W et al (2017) Preparation and luminescent performances of transparent screen-printed Ce3+: Y3Al5O12 phosphors-in-glass thick films for remote white LEDs. J Alloys Compd 720:340–344. https://doi.org/10.1016/j.jallcom.2017.05.270

    Article  CAS  Google Scholar 

  197. Ray A, Roy A, De S et al (2018) Frequency and temperature dependent dielectric properties of TiO2 -V2O5 nanocomposites. J Appl Phys 123:3–8. https://doi.org/10.1063/1.5012586

    Article  CAS  Google Scholar 

  198. Phadtare VD, Parale VG, Kulkarni GK et al (2017) Screen printed carbon nanotube thick film on alumina substrate. Ceram Int 43:4612–4617. https://doi.org/10.1016/j.ceramint.2016.12.126

    Article  CAS  Google Scholar 

  199. Zhu F, Chen H, Feng W et al (2018) Fabrication of compact disk-based submicroband electrode and its application for Cu2+ detection. J Electroanal Chem 823:171–175. https://doi.org/10.1016/j.jelechem.2018.06.008

    Article  CAS  Google Scholar 

  200. Peng B, Ren X, Wang Z et al (2014a). Substrate. https://doi.org/10.1038/srep0643

    Article  Google Scholar 

  201. Erlenkötter A, Kottbus M, Chemnitius GC (2000) Flexible amperometric transducers for biosensors based on a screen printed three electrode system. J Electroanal Chem 481:82–94. https://doi.org/10.1016/S0022-0728(99)00491-X

    Article  Google Scholar 

  202. Properties M, Properties E, Properties T Packing group. pp 200–255. Doi: https://doi.org/10.1016/B978-0-08-050282-3.50021-4

  203. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116:2658–2667. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  204. Gerbreders V, Chang C, Ogawa H et al (2016) A novel procedure for fabricating flexible screen-printed electrodes with improved electrochemical performance. Iop Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/137/1/012060

    Article  Google Scholar 

  205. Arapov K, Jaakkola K, Ermolov V et al (2016) Graphene screen-printed radio-frequency identification devices on flexible substrates pss. Phys Stat Solidi Rapid Res Lett 7:1–7. https://doi.org/10.1002/pssr.201600330

    Article  CAS  Google Scholar 

  206. Happonen T, Voutilainen JV, Häkkinen J, Fabritius T (2016) The effect of width and thickness on cyclic bending reliability of screen-printed silver traces on a plastic substrate. IEEE Trans Components Packag Manuf Technol 6:722–728. https://doi.org/10.1109/TCPMT.2016.2544441

    Article  CAS  Google Scholar 

  207. Mitchell G (2001) Structure of polymer glasses: short-range order. In: Encyclopedia of materials: science and technology. pp 8926–8932

  208. Sharif MFM, Saad AA, Abdullah MK, et al (2018) A study on a stretchable conductive polymer of thermoplastic automotive device. In: Proceedings of the 2018 IEEE 38th international electrical and manufacturing technology conference IEMT, pp 1–4. Doi: https://doi.org/10.1109/IEMT.2018.8511656

  209. Cai J, Cizek K, Long B et al (2009) Flexible thick-film electrochemical sensors: Impact of mechanical bending and stress on the electrochemical behavior. Sens Actuators B Chem 137:379–385. https://doi.org/10.1016/j.snb.2008.10.027

    Article  CAS  Google Scholar 

  210. McKeen LW (2013) Introduction to use of plastics in food packaging. In: Plastic films in food packaging: materials, technology and applications. pp 1–15

  211. Gilbert M, Patrick S (2016) Poly(Vinyl Chloride). Elsevier, Amsterdam

    Google Scholar 

  212. Gilbert M, Patrick S (2017) Chapter 13 - Poly(Vinyl Chloride). In: Gilbert M (ed) Brydson’s plastics materials, 8th edn. Butterworth-Heinemann. pp 329–388

  213. Horvath E, Torok A, Ficzere P, Zador I (2014) Optim Comput Aided Screen Printing Des 11:29–44

    Google Scholar 

  214. Wang L, Liu J (2015) Pressured liquid metal screen printing for rapid manufacture of high resolution electronic patterns. RSC Adv 5:57686–57691. https://doi.org/10.1039/c5ra10295b

    Article  CAS  Google Scholar 

  215. Reboun J, Pretl S, Navratil J, Hlina J (2016) Bending endurance of printed conductive patterns on flexible substrates. pp 184–188

  216. Owen MJ (2001) Elastomers: siloxane. In: Encyclopedia of materials: science and technology. pp 2480–2482

  217. Li CY, Liao YC (2016) Adhesive stretchable printed conductive thin film patterns on PDMS surface with an atmospheric plasma treatment. ACS Appl Mater Interfaces 8:11868–11874. https://doi.org/10.1021/acsami.6b02844

    Article  CAS  Google Scholar 

  218. Peng B, Ren X, Wang Z et al (2014b) High performance organic transistor active-matrix driver developed on paper substrate. Sci Rep 4:1–7. https://doi.org/10.1038/srep06430

    Article  CAS  Google Scholar 

  219. Alpine MCMC, Ahmad H, Wang D, Heath JR (2007) Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat Mater. https://doi.org/10.1038/nmat1891

    Article  Google Scholar 

  220. Arduini F (2017) Onto paper towel, waxed paper, and parafilm M ®. Sensors. https://doi.org/10.3390/s17102267

    Article  Google Scholar 

  221. Maddipatla D, Narakathu BB, Bazuin BJ, Atashbar MZ (2017) Development of a printed impedance based electrochemical sensor on paper substrate. Proc IEEE Sensors 1:1–3. https://doi.org/10.1109/ICSENS.2016.7808785

  222. Maluin FN, Sharifah M, Rattanarat P et al (2016) Analytical methods nanocomposites and fabrication as screen printed paper based sensors for cholesterol detection. Anal Methods 8:8049–8058. https://doi.org/10.1039/C6AY02478E

    Article  CAS  Google Scholar 

  223. Metters JP, Tan F, Kadara RO, Banks CE (2012) Analytical Methods Electroanalytical properties of screen printed shallow recessed electrodes. Anal Methods. https://doi.org/10.1039/c2ay25512j

    Article  Google Scholar 

  224. Su W, Wang S, Cheng S (2011) Electrochemically pretreated screen-printed carbon electrodes for the simultaneous determination of aminophenol isomers. J Electroanal Chem 651:166–172. https://doi.org/10.1016/j.jelechem.2010.11.028

    Article  CAS  Google Scholar 

  225. Wei H, Sun J, Xie Y et al (2007) Enhanced electrochemical performance at screen-printed carbon electrodes by a new pretreating procedure. Anal Chim Acta 588:297–303. https://doi.org/10.1016/j.aca.2007.02.006

    Article  CAS  Google Scholar 

  226. Elgrishi N, Rountree KJ, McCarthy BD et al (2018) A practical beginner’s guide to cyclic voltammetry. J Chem Educ 95:197–206. https://doi.org/10.1021/acs.jchemed.7b00361

    Article  CAS  Google Scholar 

  227. Lakshmanakumar M, Sethuraman S, Rajan KS et al (2020) Activation of edge plane pyrolytic graphite in screen printed carbon electrodes on OHP sheet, Whatman paper and textile substrates. J Appl Electrochem 50:559–567. https://doi.org/10.1007/s10800-020-01413-4

    Article  CAS  Google Scholar 

  228. Cui G, Yoo JH, Lee JS et al (2001) Effect of pre-treatment on the surface and electrochemical properties of screen-printed carbon paste electrodes. Analyst 126:1399–1403. https://doi.org/10.1039/b102934g

    Article  CAS  Google Scholar 

  229. Javaherdashti R (2000) Ref 9.pdf. Anti-Corrosion Methods Mater 47:30–34

    Article  Google Scholar 

  230. Wang J, Pedrero M, Sakslund H et al (1996) Electrochemical activation of screen-printed carbon strips. Analyst 121:345–350. https://doi.org/10.1039/an9962100345

    Article  CAS  Google Scholar 

  231. Dock E, Ruzgas T (2003) Screen-printed carbon electrodes modified with cellobiose dehydrogenase: amplification factor for catechol vs. reversibility of ferricyanide. Electroanalysis 15:492–498. https://doi.org/10.1002/elan.200390059

    Article  CAS  Google Scholar 

  232. Obaje EA, Cummins G, Schulze H et al (2016) Carbon screen-printed electrodes on ceramic substrates for label-free molecular detection of antibiotic resistance. J Interdiscip Nanomed 1:93–109. https://doi.org/10.1002/jin2.16

    Article  CAS  Google Scholar 

  233. Wang SC, Chang KS, Yuan CJ (2009) Enhancement of electrochemical properties of screen-printed carbon electrodes by oxygen plasma treatment. Electrochim Acta 54:4937–4943. https://doi.org/10.1016/j.electacta.2009.04.006

    Article  CAS  Google Scholar 

  234. Majzlíková P, Prášek J, Eliáš M et al (2014) Comparison of different modifications of screen-printed working electrodes of electrochemical sensors using carbon nanotubes and plasma treatment. Phys Status Solidi Appl Mater Sci 211:2756–2764. https://doi.org/10.1002/pssa.201431438

    Article  CAS  Google Scholar 

  235. Hayat A, Marty JL (2014) Disposable screen printed electrochemical sensors: tools for environmental monitoring. Sensors. https://doi.org/10.3390/s140610432

    Article  Google Scholar 

  236. Huang XJ, O’Mahony AM, Compton RG (2009) Microelectrode arrays for electrochemistry: approaches to fabrication. Small 5:776–788. https://doi.org/10.1002/smll.200801593

    Article  CAS  Google Scholar 

  237. Bond AM (1994) Past, present and future contributions of microelectrodes to analytical studies employing voltammetric detection. Rev Anal 119:1–21. https://doi.org/10.1039/AN994190001R

    Article  Google Scholar 

  238. Xie X, Stueben D, Berner Z (2005) The application of microelectrodes for the measurements of trace metals in water. Anal Lett 38:2281–2300. https://doi.org/10.1080/00032710500316050

    Article  CAS  Google Scholar 

  239. Craston DH, Jones CP, Williams DE, El Murr N (1991) Microband electrodes fabricated by screen printing processes: Applications in electroanalysis. Talanta 38:17–26. https://doi.org/10.1016/0039-9140(91)80005-K

    Article  CAS  Google Scholar 

  240. Metters JP, Kadara RO, Banks CE (2013) Fabrication of co-planar screen printed microband electrodes. Analyst 138:2516–2521. https://doi.org/10.1039/c3an00268c

    Article  CAS  Google Scholar 

  241. Rawson FJ, Purcell WM, Xu J et al (2007) Fabrication and characterisation of novel screen-printed tubular microband electrodes, and their application to the measurement of hydrogen peroxide. Electrochim Acta 52:7248–7253. https://doi.org/10.1016/j.electacta.2007.05.062

    Article  CAS  Google Scholar 

  242. Štulík K, Christian A, Karel H, Vladimír M, Kutner WŁO (2000) Microelectrodes. Defin Charact Appl. 72:1483–1492

    Google Scholar 

  243. Ruas De Souza AP, Foster CW, Kolliopoulos AV et al (2015) Screen-printed back-to-back electroanalytical sensors: Heavy metal ion sensing. Analyst 140:4130–4136. https://doi.org/10.1039/c5an00381d

    Article  CAS  Google Scholar 

  244. Tangkuaram T, Ponchio C, Kangkasomboon T et al (2007) Design and development of a highly stable hydrogen peroxide biosensor on screen printed carbon electrode based on horseradish peroxidase bound with gold nanoparticles in the matrix of chitosan. Biosens Bioelectron 22:2071–2078. https://doi.org/10.1016/j.bios.2006.09.011

    Article  CAS  Google Scholar 

  245. He P, Cao J, Ding H et al (2019) Screen-printing of a highly conductive graphene ink for flexible printed electronics. ACS Appl Mater Interfaces 11:32225–32234. https://doi.org/10.1021/acsami.9b04589

    Article  CAS  Google Scholar 

  246. Marković N, Conzuelo F, Szczesny J et al (2019) An air-breathing carbon cloth-based screen-printed electrode for applications in enzymatic biofuel cells. Electroanalysis 31:217–221. https://doi.org/10.1002/elan.201800462

    Article  CAS  Google Scholar 

  247. Sassolini A, Colozza N, Papa E et al (2019) Screen-printed electrode as a cost-effective and miniaturized analytical tool for corrosion monitoring of reinforced concrete. Electrochem commun 98:69–72. https://doi.org/10.1016/j.elecom.2018.11.023

    Article  CAS  Google Scholar 

  248. Ali MA, Solanki PR, Srivastava S et al (2015) Protein functionalized carbon nanotubes-based smart lab-on-a-chip. ACS Appl Mater Interfaces 7:5837–5846. https://doi.org/10.1021/am509002h

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Nano Mission Council (SR/NM/TP-83/2016(G)) and FIST funding support (SR/FST/ET-I/2018/221(C)), Department of Science and Technology for their financial support. We are grateful to SASTRA Deemed University, Thanjavur, for providing infrastructure support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Bosco Balaguru Rayappan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, R.R., Lakshmanakumar, M., Arockia Jayalatha, J.B.B. et al. Fabrication of screen-printed electrodes: opportunities and challenges. J Mater Sci 56, 8951–9006 (2021). https://doi.org/10.1007/s10853-020-05499-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05499-1

Navigation