Skip to main content
Log in

Electronic, photocatalytic, and optical properties of two-dimensional boron pnictides

  • Computation
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

By employing first-principles calculations, we investigate the stabilities, quasi-particle band structures, and photocatalytic and optical properties of monolayer boron pnictides. Calculations indicate that monolayer boron pnictides have highly thermal stabilities verified by molecular dynamics, appreciable direct bandgaps, and good optical absorptions in the visible and near-infrared ranges. In addition, the relatively small exciton binding energies are also observed in the three systems, facilitating the separation of photogenerated electrons and holes. More interestingly, monolayer boron phosphide satisfies the criteria of photocatalyst for water splitting, and its photocatalytic performance can be further enhanced by applying biaxial tensile strain. Our researches provide valuable insight for finding monolayer boron pnictides applied in optoelectronics and photocatalytic water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  2. Wang QH, Kalantar-Zadeh K, Kis A et al (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712

    Article  CAS  Google Scholar 

  3. Li L, Yu Y, Ye GJ et al (2014) Black phosphorus field-effect transistors. Nat Nanotechnol 9:372–377

    Article  CAS  Google Scholar 

  4. Liu H, Du Y, Deng Y, Ye PD (2015) Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem Soc Rev 44:2732–2743

    Article  CAS  Google Scholar 

  5. Zhang S, Guo S, Chen Z et al (2018) Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem Soc Rev 47:982–1021

    Article  CAS  Google Scholar 

  6. Novoselov KS, Geim AK, Morozov SV et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  CAS  Google Scholar 

  7. Castro Neto AH, Guinea F, Peres NMR et al (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162

    Article  CAS  Google Scholar 

  8. Kotov VN, Uchoa B, Pereira VM et al (2012) Electron–electron interactions in graphene: current Status and Perspectives. Rev Mod Phys 84:1067–1125

    Article  CAS  Google Scholar 

  9. Bepete G, Anglaret E, Ortolani L et al (2016) Surfactant-free single-layer graphene in water. Nat Chem 9:347–352

    Article  Google Scholar 

  10. Radisavljevic B, Radenovic A, Brivio J et al (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150

    Article  CAS  Google Scholar 

  11. Chhowalla M, Shin HS, Eda G et al (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275

    Article  Google Scholar 

  12. Jariwala D, Sangwan VK, Lauhon LJ et al (2014) Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8:1102–1120

    Article  CAS  Google Scholar 

  13. Onga M, Zhang Y, Ideue T, Iwasa Y (2017) Exciton Hall effect in monolayer MoS2. Nat Mater 16:1193–1197

    Article  CAS  Google Scholar 

  14. Liu H, Neal AT, Zhu Z et al (2014) Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8:4033–4041

    Article  CAS  Google Scholar 

  15. Xia F, Wang H, Jia Y (2014) Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun 5:4458-1–4458-6

    Google Scholar 

  16. Wang X, Jones AM, Seyler KL et al (2015) Highly anisotropic and robust excitons in monolayer black phosphorus. Nat Nanotechnol 10:517–521

    Article  CAS  Google Scholar 

  17. Rahman MZ, Kwong CW, Davey K, Qiao SZ (2016) 2D phosphorene as a water splitting photocatalyst: fundamentals to applications. Energy Env Sci 9:709–728

    Article  CAS  Google Scholar 

  18. Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355

    Article  CAS  Google Scholar 

  19. Morozov SV, Novoselov KS, Katsnelson MI et al (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100:016602-1–016602-4

    Google Scholar 

  20. Mak KF, Lee C, Hone J et al (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805-1–136805-4

    Article  Google Scholar 

  21. Lu J, Carvalho A, Chan XK et al (2015) Atomic healing of defects in transition metal dichalcogenides. Nano Lett 15:3524–3532

    Article  CAS  Google Scholar 

  22. Novoselov KS, Jiang D, Schedin F et al (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451–10453

    Article  CAS  Google Scholar 

  23. Castellanos-Gomez A, Vicarelli L, Prada E et al (2014) Isolation and characterization of few-layer black phosphorus. 2D Mater 1:025001-1–025001-19

    Google Scholar 

  24. Island JO, Steele GA, van der Zant HSJ, Castellanos-Gomez A (2015) Environmental instability of few-layer black phosphorus. 2D Mater 2:011002-1–011002-6

    Article  Google Scholar 

  25. Chen S, Gong XG, Walsh A, Wei S-H (2009) Crystal and electronic band structure of Cu2ZnSnX4 (X = S and Se) photovoltaic absorbers: first-principles insights. Appl Phys Lett 94:041903-1–041903-3

    Google Scholar 

  26. Chen S, Gong XG, Walsh A, Wei S-H (2009) Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and III-VI compounds. Phys Rev B 79:165211-1–165211-10

    Google Scholar 

  27. Zhuang HL, Hennig RG (2012) Electronic structures of single-layer boron pnictides. Appl Phys Lett 101:153109-1–153109-4

    Google Scholar 

  28. Dean CR, Young AF, Meric I et al (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5:722–726

    Article  CAS  Google Scholar 

  29. Lee KH, Shin H-J, Lee J et al (2012) Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett 12:714–718

    Article  CAS  Google Scholar 

  30. Liu Z, Gong Y, Zhou W et al (2013) Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat Commun 4:2541-1–2541-8

    Google Scholar 

  31. Li X, Yin J, Zhou J, Guo W (2014) Large area hexagonal boron nitride monolayer as efficient atomically thick insulating coating against friction and oxidation. Nanotechnology 25:105701-1–105701-5

    Article  Google Scholar 

  32. Park J-H, Park JC, Yun SJ et al (2014) Large-area monolayer hexagonal boron nitride on Pt foil. ACS Nano 8:8520–8528

    Article  CAS  Google Scholar 

  33. Watanabe K, Taniguchi T, Kanda H (2004) Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater 3:404–409

    Article  CAS  Google Scholar 

  34. Kubota Y, Watanabe K, Tsuda O, Taniguchi T (2007) Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317:932–934

    Article  CAS  Google Scholar 

  35. Şhin H, Cahangirov S, Topsakal M et al (2009) Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Phys Rev B 80:155453-1–155453-12

    Article  Google Scholar 

  36. Xie M, Zhang S, Cai B et al (2016) Two-dimensional BX (X = P, As, Sb) semiconductors with mobilities approaching graphene. Nanoscale 8:13407–13413

    Article  CAS  Google Scholar 

  37. Zeng B, Li M, Zhang X et al (2016) First-principles prediction of the electronic structure and carrier mobility in hexagonal boron phosphide sheet and nanoribbons. J Phys Chem C 120:25037–25042

    Article  CAS  Google Scholar 

  38. Çakır D, Kecik D, Sahin H et al (2015) Realization of a p-n junction in a single layer boron-phosphide. Phys Chem Chem Phys 17:13013–13020

    Article  Google Scholar 

  39. Giannozzi P, Baroni S, Bonini N et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys: Condens Matter 21:395502-1–395502-19

    Google Scholar 

  40. Goedecker S, Teter M, Hutter J (1996) Separable dual-space Gaussian pseudopotentials. Phys Rev B 54:1703–1710

    Article  CAS  Google Scholar 

  41. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  42. Artacho E, Anglada E, Diéguez O et al (2008) The SIESTA method; developments and applicability. J Phys: Condens Matter 20:064208-1–064208-6

    Google Scholar 

  43. Marini A, Hogan C, Grüning M, Varsano D (2009) Yambo: an ab initio tool for excited state calculations. Comput Phys Commun 180:1392–1403

    Article  CAS  Google Scholar 

  44. Hybertsen MS, Louie SG (1986) Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys Rev B 34:5390–5413

    Article  CAS  Google Scholar 

  45. Li Y, Liao Y, Chen Z (2014) Be2C monolayer with quasi-planar hexacoordinate carbons: a global minimum structure. Angew Chem Int Ed 53:7248–7252

    Article  CAS  Google Scholar 

  46. Molina-Sánchez A, Wirtz L (2011) Phonons in single-layer and few-layer MoS2 and WS2. Phys Rev B 84:115413-1–115413-8

    Article  Google Scholar 

  47. Cahangirov S, Topsakal M, Aktürk E et al (2009) Two- and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett 102:236804-1–236804-4

    Article  Google Scholar 

  48. Harrison WA (1989) Electronic structure and the properties of solids: the physics of the chemical bond. Dover Publications, New York

    Google Scholar 

  49. Qiao J, Kong X, Hu Z-X et al (2014) High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun 5:4475-1–4475-7

    Article  CAS  Google Scholar 

  50. Li X, Zhao J, Yang J (2013) Semihydrogenated BN sheet: a promising visible-light driven photocatalyst for water splitting. Sci Rep 3:1858-1–1858-5

    Google Scholar 

  51. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  CAS  Google Scholar 

  52. Chakrapani V, Angus JC, Anderson AB et al (2007) Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple. Science 318:1424–1430

    Article  CAS  Google Scholar 

  53. Friedrich C, Müller MC, Blügel S (2011) Band convergence and linearization error correction of all-electron GW calculations: the extreme case of zinc oxide. Phys Rev B 83:081101-1–081101-4

    Article  Google Scholar 

  54. Nabok D, Gulans A, Draxl C (2016) Accurate all-electron G0W0 quasiparticle energies employing the full-potential augmented plane-wave method. Phys Rev B 94:035118-1–035118-9

    Article  Google Scholar 

  55. Feng J, Qian X, Huang C-W, Li J (2012) Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat Photonics 6:866–872

    Article  CAS  Google Scholar 

  56. Manzeli S, Allain A, Ghadimi A, Kis A (2015) Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2. Nano Lett 15:5330–5335

    Article  CAS  Google Scholar 

  57. Tran V, Soklaski R, Liang Y, Yang L (2014) Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys Rev B 89:235319-1–235319-6

    Google Scholar 

  58. Cheiwchanchamnangij T, Lambrecht WRL (2012) Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys Rev B 85:205302-1–205302-4

    Article  Google Scholar 

  59. Choi J-H, Cui P, Lan H, Zhang Z (2015) Linear scaling of the exciton binding energy versus the band gap of two-dimensional materials. Phys Rev Lett 115:066403-1–066403-5

    Google Scholar 

  60. The AM1.5G spectrum was taken from the NREL website: http://rredc.nrel.gov/solar/spectra/am1.5

Download references

Acknowledgements

The work was supported by the Research Fund (1052931610) of Jiangsu University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huabing Shu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4911 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, H., Guo, J. & Niu, X. Electronic, photocatalytic, and optical properties of two-dimensional boron pnictides. J Mater Sci 54, 2278–2288 (2019). https://doi.org/10.1007/s10853-018-2987-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2987-8

Keywords

Navigation