Skip to main content
Log in

Structural defects and sp2 localization in CVD diamond

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Transmission electron microscopy and energy loss near edge spectroscopy were used to characterize microstructural defects in polycrystalline CVD diamond films. Of particular interest here is the change in sp2 content catalyzed by structural defects such as twin boundaries, random grain boundaries, and dislocations. Changes in bonding configuration from sp3 to sp2 are known to have significant impact on many properties of interest in CVD diamond. I have shown here that coherent Σ = 3 twin boundaries do not lead to sp2 formation, while dislocations and random grain boundaries do. Another feature of interest here is the fivefold twining structure, which is typically found in CVD diamond. It comprises four Σ  = 3 coherent twin boundaries, but topological constraint for filling the entire space induces the formation of low-angle grain boundaries and multiple stacking faults in one of the twin domains. I have shown that such defects are indeed present and primarily localized in one domain. The strain associated with these defects increases the localized sp2 content in the diamond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Butler JE, Windischmann H (1998) Developments in CVD-diamond synthesis during the past decade. MRS Bull 9:22–27

    Article  Google Scholar 

  2. Schwander M, Partes K (2011) A review of diamond synthesis by CVD processes. Diam Relat Mater 20(9):1287–1301

    Article  CAS  Google Scholar 

  3. Colins AT (1994) The optical and electronic properties of semiconducting diamond. In: Lettington A, Steeds JW (eds) Thin film diamond. Chapman & Hall, London, pp 63–74

    Chapter  Google Scholar 

  4. Anthony TR (1994) The thermal conductivity of CVD diamond films. In: Lettington A, Steeds JW (eds) Thin film diamond. Chapman & Hall, London, pp 75–82

    Chapter  Google Scholar 

  5. Gicquel A, Hassouni K, Silva F, Achard J (2001) CVD diamond films: from growth to applications. Curr Appl Phys 1:479–496

    Article  Google Scholar 

  6. Shechtman D, Feldman A, Vaudin MD, Hutchison JL (1993) Moire fringe images of twin boundaries in chemical vapor deposited diamond. Appl Phys Lett 62:487–489

    Article  CAS  Google Scholar 

  7. Shechtman D, Hutchison JL, Robins LH, Farabaugh EN, Feldman A (2000) Growth defects in diamond films. J Mater Res 8(3):473–479

    Article  Google Scholar 

  8. Luyten W, Van Tendeloo G, Amelincx S (1992) Electron microscopy study of defects in synthetic diamond layers. Philos Mag A 66(6):899–915

    Article  CAS  Google Scholar 

  9. Dorignac D, Serin V, Delclos S, Phillip F, Rats D, Vandenbuckle L (1997) HREM and EXELFS investigation of local structure in thin CVD diamond films. Diam Relat Mater 6:758–762

    Article  CAS  Google Scholar 

  10. Steeds JW, Gilmore A, Bussmann KM, Butler JE, Koidl P (1999) On the nature of grain boundary defects in high quality CVD diamond films and their influence on physical properties. Diam Relat Mater 8:996–1005

    Article  CAS  Google Scholar 

  11. Mohr M, Daccache L, Horvat S, Bruhne K, Jacob T, Fecht H-J (2017) Influence of grain boundaries on elasticity and thermal conductivity of nanocrystalline diamond films. Acta Mater 122:92–98

    Article  CAS  Google Scholar 

  12. Anaya J, Bai T, Wang Y, Li C, Goorsky M, Bougher TL, Yates L, Cheng Z, Graham S, Hobbart KD, Feygelson TI, Tadjer MJ, Anderson TJ, Pates BB, Kubali M (2017) Simultaneous determination of the lattice thermal conductivity and grain/grain thermal resistance in polycrystalline diamond. Act Mater 139:215–225

    Article  CAS  Google Scholar 

  13. Jia X, Huang N, Guo Y, Liu L, Li P, Zhai Z, Yang B, Yuan Z, Shi D, Jiang X (2018) Growth behavior of CVD diamond films with enhanced field emission properties over a wide range of experimental parameters. J Mater Sci Technol (Accepted for publication)

  14. Nebel CE (2003) Electron properties of CVD diamond. Semicond Sci Technol 18:S1–S11

    Article  CAS  Google Scholar 

  15. Aghababaei R, Anciaux G, Molinari J-F (2014) Impact of internal crystalline boundaries on lattice thermal conductivity: importance of boundary structure and spacing. Appl Phys Lett 105:194102. https://doi.org/10.1063/1.4901887

    Article  CAS  Google Scholar 

  16. Salvadori MC, Cattani M, Mammana V, Monteiro OR, Ager JW III, Brown IG (1996) Free-standing CVD diamond membranes. Thin Sol Films 290–291:157–160

    Article  Google Scholar 

  17. Duparc OH (2011) A review of some elements in the history of grain boundaries, centered on Georges Friedel, the coincident ‘site’ lattice and the twin index. J Mater Sci 46:4116–4134. https://doi.org/10.1007/s10853-011-5367-1

    Article  CAS  Google Scholar 

  18. Balluffi RW, Brokman A, King AH (1982) CSL/DSC lattice model for general crystal-crystal boundaries and their line defects. Acta Metall 30:1453–1470

    Article  CAS  Google Scholar 

  19. Sutton AR, Balluffi RW (1995) Interfaces in crystalline solids. Oxford Science Publications, New York

    Google Scholar 

  20. Hofmeister H (2009) Shape variations and anisotropic growth of multiply twinned nanoparticles. Z Kristallogt 224:528–538

    CAS  Google Scholar 

  21. Butler JE, Oleynik I (2008) A mechanism for crystal twinning in the growth of diamond by chemical vapor deposition. Philos Tans R Soc A 366:295–311

    Article  CAS  Google Scholar 

  22. Buhler J, Prior Y (2000) Study of morphological behavior of single diamond crystals. J Crystal Growth 209:779–788

    Article  CAS  Google Scholar 

  23. Blumenau AT, Jones R, Frauenheim T, Willems B, Lebedev OI, Van Tendeloo G, Fisher D, Martineau PM (2003) Dislocations in diamond: dissociation into partials and their glide motion. Phys Rev B 68:014115. https://doi.org/10.1103/PhysRevB.68.014115

    Article  CAS  Google Scholar 

  24. Egerton RF, Whelan. MJ (1974) Electron energy loss spectroscopy of diamond, graphite and amorphous carbon. Electron Spectr Rel Phenom 3:222–236

    Google Scholar 

  25. Morar JF, Himpsel FJ, Hollinger G, Hiughes G, Jordan JL (1985) Observation of a C-1s core exciton in diamond. Phys Rev Lett 54(17):1960–1963

    Article  CAS  Google Scholar 

  26. Lu Y-G, Turner S, Verbeek J, Jassens SD, Wagner P, dan Haenen K, Van Tendeloo G (2012) Direct visualization of boron dopant distribution and coordination in individual chemical vapor deposition nanocrystalline B-doped diamond grains. Appl Phys Lett 101:041907. https://doi.org/10.1063/1.4738885

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was in part supported by the US DOE Office of Energy Research under Contract No. DE-AC03-76SF00098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Othon R. Monteiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteiro, O.R. Structural defects and sp2 localization in CVD diamond. J Mater Sci 54, 2300–2306 (2019). https://doi.org/10.1007/s10853-018-2949-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2949-1

Keywords

Navigation