Skip to main content
Log in

Understanding the negative thermal expansion in planar graphite–metal composites

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The addition of graphitic fibers and flakes as fillers is commonly used to control the thermal expansion of metals. Sintered metal matrix composites with a planar distribution of graphite flakes show a low or negative thermal expansion coefficient perpendicular to the orientation plane of the graphite (z-CTE). Since the metal matrix has a positive isotropic expansion and graphite has a high z-CTE, this effect cannot be explained by a simple model of stapled metal–graphite layers. Instead, a mechanical interaction between graphite and matrix must be considered. With neutron scattering measurements, we show that there is little or no strain of the graphite flakes caused by the matrix, which can be explained by the high modulus of graphite. Instead, we suggest that a macroscopic crumpling of the flakes is responsible for the low z-CTE of the composite. The crumpled flakes are thicker at low temperature and get stretched and flattened by the expanding matrix at high temperature, explaining the reduction in the thermal expansion across the orientation plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Carlson RO, Glascock HH, Webster HF, Neugebauer CA (1984) Thermal expansion mismatch in electronic packaging. In: MRS Proc. Cambridge Univ Press, Cambridge, p 177

  2. Zweben C (2005) Advanced electronic packaging materials. Adv Mater Process 163:33–37

    CAS  Google Scholar 

  3. Korb G, Koráb J, Groboth G (1998) Thermal expansion behaviour of unidirectional carbon-fibre-reinforced copper-matrix composites. Compos Part A 29:1563–1567. https://doi.org/10.1016/S1359-835X(98)00066-9

    Article  Google Scholar 

  4. Sebo P, Stefanik P (2003) Copper matrix + -carbon fibre composites. Int J Mater Prod Technol 18:141–159

    Article  Google Scholar 

  5. Ellis DL, McDanels DL (1993) Thermal conductivity and thermal expansion of graphite fiber-reinforced copper matrix composites. Metall Trans A 24:43–52. https://doi.org/10.1007/BF02669601

    Article  Google Scholar 

  6. Rawal S (2001) Metal-matrix composites for space applications. JOM J Miner Met Mater Soc 53:14–17. https://doi.org/10.1007/s11837-001-0139-z

    Article  CAS  Google Scholar 

  7. Russell-Stevens M, Todd RI, Papakyriacou M (2006) Thermal expansion behaviour of ultra-high modulus carbon fibre reinforced magnesium composite during thermal cycling. J Mater Sci 41:6228–6236. https://doi.org/10.1007/s10853-006-0318-y

    Article  CAS  Google Scholar 

  8. Silvain J-F, Veillère A, Lu Y (2014) Copper-carbon and aluminum-carbon composites fabricated by powder metallurgy processes. J Phys Conf Ser 525:012015. https://doi.org/10.1088/1742-6596/525/1/012015

    Article  CAS  Google Scholar 

  9. Yoshida K, Morigami H (2004) Thermal properties of diamond/copper composite material. Microelectron Reliab 44:303–308. https://doi.org/10.1016/S0026-2714(03)00215-4

    Article  CAS  Google Scholar 

  10. Boden A, Boerner B, Kusch P et al (2014) Nanoplatelet size to control the alignment and thermal conductivity in copper-graphite composites. Nano Lett 14:3640–3644. https://doi.org/10.1021/nl501411g

    Article  CAS  Google Scholar 

  11. Oddone V, Boerner B, Reich S (2017) Composites of aluminum alloy and magnesium alloy with graphite showing low thermal expansion and high specific thermal conductivity. Sci Technol Adv Mater 18:180–186. https://doi.org/10.1080/14686996.2017.1286222

    Article  CAS  Google Scholar 

  12. Oddone V, Reich S (2017) Thermal properties of metal matrix composites with planar distribution of carbon fibres. Phys Status Solidi Rapid Res Lett 1700090:1700090. https://doi.org/10.1002/pssr.201700090

    Article  CAS  Google Scholar 

  13. Prieto R, Molina JM, Narciso J, Louis E (2008) Fabrication and properties of graphite flakes/metal composites for thermal management applications. Scr Mater 59:11–14. https://doi.org/10.1016/j.scriptamat.2008.02.026

    Article  CAS  Google Scholar 

  14. Firkowska I, Boden A, Boerner B, Reich S (2015) The origin of high thermal conductivity and ultralow thermal expansion in copper-graphite composites. Nano Lett 15:4745–4751. https://doi.org/10.1021/acs.nanolett.5b01664

    Article  CAS  Google Scholar 

  15. Chu K, Wang XH, Li YB et al (2018) Thermal properties of graphene/metal composites with aligned graphene. Mater Des 140:85–94. https://doi.org/10.1016/j.matdes.2017.11.048

    Article  CAS  Google Scholar 

  16. Hutsch T, Schubert T, Schmidt J et al (2010) Innovative metal–graphite composites as thermally conducting materials. In: Proc. Powder Metall. World Congr. Exhib. PM2010, pp 361–368

  17. Hutsch T, Schubert T, Weissgaerber T, Kieback B (2012) Graphite metal composites with tailored physical properties. Emerg Mater Res 1:107–114. https://doi.org/10.1680/emr.11.00021

    Article  CAS  Google Scholar 

  18. Zhou C, Ji G, Chen Z et al (2014) Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications. Mater Des 63:719–728. https://doi.org/10.1016/j.matdes.2014.07.009

    Article  CAS  Google Scholar 

  19. Oddone V, Segl J, Prakasam M et al (2018) Isotropic thermal expansion in anisotropic thermal management composites filled with carbon fibres and graphite. J Mater Sci 53:10910–10919. https://doi.org/10.1007/s10853-018-2373-6

    Article  CAS  Google Scholar 

  20. Wang X, Wang X, Liu M et al (2018) Anisotropic thermal expansion coefficient of multilayer graphene reinforced copper matrix composites. J Alloys Compd 755:114–122. https://doi.org/10.1016/j.jallcom.2018.04.325

    Article  CAS  Google Scholar 

  21. Schapery RA (1968) Thermal expansion coefficients of composite materials based on energy principles. J Compos Mater 2:380–404

    Article  Google Scholar 

  22. Kerner EH (1956) The elastic and thermo-elastic properties of composite media. Proc Phys Soc Sect B 69:808

    Article  Google Scholar 

  23. Turner PS (1942) The problem of thermal-expansion stresses in reinforced plastics. Natl Advis Committes Aeronaut 36:1–23

    Google Scholar 

  24. McCullough RL (1985) Generalized combining rules for predicting transport properties of composite materials. Compos Sci Technol 22:3–21

    Article  CAS  Google Scholar 

  25. Nelson JB, Riley DP (1945) The thermal expansion of graphite from 15 c. to 800 c. Part I. Experimental. Proc Phys Soc 57:477

    Article  CAS  Google Scholar 

  26. Blakslee OL, Proctor DG, Seldin EJ et al (1970) Elastic constants of compression-annealed pyrolytic graphite. J Appl Phys 41:3373–3382. https://doi.org/10.1063/1.1659428

    Article  CAS  Google Scholar 

  27. Cobden R (1994) Aluminium: physical properties, characteristics and alloys. European Aluminium Association, Bruxelles

    Google Scholar 

  28. (2007) Data sheet: an aluminium alloy with the strength of steel (Alloy 7068). Advanced Metals International, Bedfordshire

  29. DeGarmo EP, Black JT, Kohser RA, Klamecki BE (1997) Materials and process in manufacturing. Prentice Hall, Upper Saddle River

    Google Scholar 

  30. Briche G, Tessier-Doyen N, Huger M, Chotard T (2008) Investigation of the damage behaviour of refractory model materials at high temperature by combined pulse echography and acoustic emission techniques. J Eur Ceram Soc 28:2835–2843. https://doi.org/10.1016/j.jeurceramsoc.2008.04.023

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Tessier-Doyen (University of Limoges, France), Anton PJ Stampfl (Australian Nuclear Science and Technology Organisation) and Nils Stelzer (Aerospace & Advanced Composites GmbH, Austria) for helpful discussions. V. O. wishes to acknowledge the Evonik Foundation for financial support. Further, we acknowledge Benji Börner for the help with CTE measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Oddone.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oddone, V., Wimpory, R.C. & Reich, S. Understanding the negative thermal expansion in planar graphite–metal composites. J Mater Sci 54, 1267–1274 (2019). https://doi.org/10.1007/s10853-018-2879-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2879-y

Keywords

Navigation