Skip to main content
Log in

Cross-linked fully aromatic sulfonated polyamide as a highly efficiency polymeric filler in SPEEK membrane for high methanol concentration direct methanol fuel cells

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The current direct methanol fuel cells are still largely limited to the neat methanol operation due to the high methanol permeation of the currently used Nafion membranes. To achieve high methanol concentration DMFC application of the sulfonated poly(ether ether ketone) (SPEEK)-based proton exchange membrane, the neat SPEEK membrane is here modified by blending with the designed cross-linked fully aromatic sulfonated polyamide (Cr-fa-SPA). As the similar fully aromatic features of the SPEEK and the Cr-fa-SPA and the formed hydrogen bonding interactions between the SPEEK and the Cr-fa-SPA, the SPEEK/Cr-fa-SPA membranes show good compatibility, which is beneficial for the construction of the uniform and contact morphology of the membrane. In addition, the cross-linking network and the hydrogen bonding interactions in the SPEEK/Cr-fa-SPA membranes are favorable for enhancing the dimensional stability and reducing the methanol permeation. In particular, the lowest methanol permeability of 0.46 × 10−7 cm2/s is successfully obtained by blending 40 wt% Cr-fa-SPA in the SPEEK/Cr-fa-SPA membrane, which is almost two magnitudes lower than that of the Nafion 117 membrane. Finally, the SPEEK/Cr-fa-SPA DMFC devices were successfully demonstrated with the highly concentrated 20 M methanol fuels with remarkable performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kerres JA (2001) Development of ionomer membranes for fuel cells. J Membr Sci 185:3–27

    Article  Google Scholar 

  2. Zhang Y, Li J, Ma L, Cai W, Cheng H (2015) Recent developments on alternative proton exchange membranes: strategies for systematic performance improvement. Energy Technol 3:675–691

    Article  Google Scholar 

  3. Cai W, Fan K, Li J, Ma L, Xu G, Xu S et al (2016) A bi-functional polymeric nano-sieve Nafion composite membrane: improved performance for direct methanol fuel cell applications. Int J Hydrog Energy 41:17102–17111

    Article  Google Scholar 

  4. Argun AA, Ashcraft JN, Hammond PT (2008) Highly conductive, methanol resistant polyelectrolyte multilayers. Adv Mater 20:1539–1543

    Article  Google Scholar 

  5. Paik Y, Kim S-S, Han OH (2008) Fuel cells—methanol behavior in direct methanol fuel cells. Angew ChemInt Edit 47:94–96

    Article  Google Scholar 

  6. Wang C, Li N, Shin DW, Lee SY, Kang NR, Lee YM et al (2011) Fluorene-based poly(arylene ether sulfone)s containing clustered flexible pendant sulfonic acids as proton exchange membranes. Macromolecules 44:7296–7306

    Article  Google Scholar 

  7. Jiang SP, Liu Z, Tian ZQ (2006) Layer-by-Layer self-assembly of composite polyelectrolyte-nafion membranes for direct methanol fuel cells. Adv Mater 18:1068–1072

    Article  Google Scholar 

  8. Li X, Faghri A (2013) Review and advances of direct methanol fuel cells (DMFCs) part I: design, fabrication, and testing with high concentration methanol solutions. J Power Sour 226:223–240

    Article  Google Scholar 

  9. Nakagawa N, Tsujiguchi T, Sakurai S, Aoki R (2012) Performance of an active direct methanol fuel cell fed with neat methanol. J Power Sour 219:325–332

    Article  Google Scholar 

  10. Bae B, Kho BK, Lim T-H, Oh I-H, Hong S-A, Ha HY (2006) Performance evaluation of passive DMFC single cells. J Power Sour 158:1256–1261

    Article  Google Scholar 

  11. Yao B, Yan X, Ding Y, Lu Z, Dong D, Ishida H et al (2014) Synthesis of sulfonic acid-containing polybenzoxazine for proton exchange membrane in direct methanol fuel cells. Macromolecules 47:1039–1045

    Article  Google Scholar 

  12. Molla S, Compan V (2015) Nanocomposite SPEEK-based membranes for direct methanol fuel cells at intermediate temperatures. J Membr Sci 492:123–136

    Article  Google Scholar 

  13. Li G, Zhao C, Cui Y, Rong T, Zhu C, Na H (2016) Intermolecular ionic cross-linked sulfonated poly(ether ether ketone) membranes with excellent mechanical properties and selectivity for direct methanol fuel cells. RSC Adv 6:23025–23032

    Article  Google Scholar 

  14. Gosalawit R, Chirachanchai S, Shishatskiy S, Nunes SP (2008) Sulfonated montmorillonite/sulfonated poly(ether ether ketone) (SMMT/SPEEK) nanocomposite membrane for direct methanol fuel cells (DMFCs). J Membr Sci 323:337–346

    Article  Google Scholar 

  15. Kim HK, Zhang M, Yuan X, Lvov SN, Chung TCM (2012) Synthesis of polyethylene-based proton exchange membranes containing PE backbone and sulfonated poly(arylene ether sulfone) side chains for fuel cell applications. Macromolecules 45:2460–2470

    Article  Google Scholar 

  16. Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185:29–39

    Article  Google Scholar 

  17. Xing P, Robertson GP, Guiver MD, Mikhailenko SD, Kaliaguine S (2004) Sulfonated poly(aryl ether ketone)s containing naphthalene moieties obtained by direct copolymerization as novel polymers for proton exchange membranes. J Polym Sci A Polym Chem 42:2866–2876

    Article  Google Scholar 

  18. Liu X, Yang Z, Zhang Y, Li C, Dong J, Liu Y et al (2017) Electrospun multifunctional sulfonated carbon nanofibers for design and fabrication of SPEEK composite proton exchange membranes for direct methanol fuel cell application. Int J Hydrog Energy 42:10275–10284

    Article  Google Scholar 

  19. Brush D, Danilczuk M, Schlick S (2015) Phase separation in sulfonated poly(ether ether ketone) (SPEEK) ionomers by spin probe ESR: effect of the degree of sulfonation and water content. Macromolecules 48:637–644

    Article  Google Scholar 

  20. Zhang Y, Ting JWY, Rohan R, Cai W, Li J, Xu G et al (2014) Fabrication of a proton exchange membrane via blended sulfonimide functionalized polyamide. J Mater Sci 49:3442–3450. https://doi.org/10.1007/s10853-014-8055-0

    Article  Google Scholar 

  21. Li J, Cai W, Ma L, Zhang Y, Chen Z, Cheng H (2015) Towards neat methanol operation of direct methanol fuel cells: a novel self-assembled proton exchange membrane. Chem comm 51:6556–6559

    Article  Google Scholar 

  22. Varcoe JR, Slade RCT (2005) Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5:187–200

    Article  Google Scholar 

  23. Kellner M, Radovanovic P, Matovic J, Liska R (2013) Novel cross-linkers for asymmetric poly-AMPS-based proton exchange membranes for fuel cells. Des Monomers Polym 17:372–379

    Article  Google Scholar 

  24. Zhang Y, Li C, Yang Z, Liu X, Dong J, Liu Y et al (2016) A robust pendant-type cross-linked anion exchange membrane (AEM) with high hydroxide conductivity at a moderate IEC value. J Mater Sci 52:3946–3958. https://doi.org/10.1007/s10853-016-0656-3

    Article  Google Scholar 

  25. Chen WF, Kuo PL (2007) Covalently cross-linked perfluorosulfonated membranes with polysiloxane framework. Macromolecules 40:1987–1994

    Article  Google Scholar 

  26. Dai WJ, Shen Y, Li ZH, Yu LH, Xi JY, Qiu XP (2014) SPEEK/Graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery. J Mater Chem A 2:12423–12432

    Article  Google Scholar 

  27. Li J, Cai W, Zhang Y, Cheng H (2014) Rigid-flexible hybrid proton-exchange membranes with improved water-retention properties and high stability for fuel cells. Energy Technol 2:685–691

    Article  Google Scholar 

  28. Li J, Cai W, Zhang Y, Xu G, Cheng H (2015) 3D-branched rigid-flexible hybrid sulfonated polyamide for proton exchange membranes (PEMs) in fuel cell applications. Energy Technol 3:155–161

    Article  Google Scholar 

  29. Fu R-Q, Julius D, Hong L, Lee J-Y (2008) PPO-based acid–base polymer blend membranes for direct methanol fuel cells. J Membr Sci 322:331–338

    Article  Google Scholar 

  30. Li X, Liu C, Xu D, Zhao C, Wang Z, Zhang G et al (2006) Preparation and properties of sulfonated poly(ether ether ketone)s (SPEEK)/polypyrrole composite membranes for direct methanol fuel cells. J Power Sour 162:1–8

    Article  Google Scholar 

  31. Park HB, Lee CH, Sohn JY, Lee YM, Freeman BD, Kim HJ (2006) Effect of crosslinked chain length in sulfonated polyimide membranes on water sorption, proton conduction, and methanol permeation properties. J Membr Sci 285:432–443

    Article  Google Scholar 

  32. Huang YF, Chuang LC, Kannan AM, Lin CW (2009) Proton-conducting membranes with high selectivity from cross-linked poly(vinyl alcohol) and poly(vinyl pyrrolidone) for direct methanol fuel cell applications. J Power Sour 186:22–28

    Article  Google Scholar 

  33. Zhong S, Cui X, Fu T, Na H (2008) Modification of sulfonated poly(ether ether ketone) proton exchange membrane for reducing methanol crossover. J Power Sour 180:23–28

    Article  Google Scholar 

  34. Jin J, Hao R, He X, Li G (2015) Sulfonated poly(phenylsulfone)/fluorinated polybenzoxazole nanofiber composite membranes for proton exchange membrane fuel cells. Int J Hydrog Energy 40:14421–14427

    Article  Google Scholar 

  35. Norsten TB, Guiver MD, Murphy J, Astill T, Navessin T, Holdcroft S et al (2006) Highly fluorinated comb-shaped copolymers as proton exchange membranes (PEMs): improving PEM properties through rational design. Adv Funct Mater 16:1814–1822

    Article  Google Scholar 

  36. Wu HL, Ma CCM, Li CH, Lee TM, Chen CY, Chiang CL et al (2006) Sulfonated poly(ether ether ketone)/poly(amide imide) polymer blends for proton conducting membrane. J Membr Sci 280:501–508

    Article  Google Scholar 

  37. Zhang Y, Li C, Liu X, Yang Z, Dong J, Liu Y et al (2016) Fabrication of a polymer electrolyte membrane with uneven side chains for enhancing proton conductivity. RSC Adv 6:79593–79601

    Article  Google Scholar 

  38. Drioli E, Regina A, Casciola M, Oliveti A, Trotta F, Massari T (2004) Sulfonated PEEK-WC membranes for possible fuel cell applications. J Membr Sci 228:139–148

    Article  Google Scholar 

  39. Zhong S, Cui X, Cai H, Fu T, Zhao C, Na H (2007) Crosslinked sulfonated poly(ether ether ketone) proton exchange membranes for direct methanol fuel cell applications. J Power Sources 164:65–72

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support of the National Natural Science Foundation of China (Nos. 21603197, 21703212, 21233006 and 21473164), Natural Science Foundation of Hubei Province of China (No. 2016CFB181) and Fundamental Research Funds for the Central University, China University of Geosciences, Wuhan (No. CUG150620).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunfeng Zhang or Zehui Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhang, Y., Liu, X. et al. Cross-linked fully aromatic sulfonated polyamide as a highly efficiency polymeric filler in SPEEK membrane for high methanol concentration direct methanol fuel cells. J Mater Sci 53, 5501–5510 (2018). https://doi.org/10.1007/s10853-017-1945-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1945-1

Keywords

Navigation