Skip to main content
Log in

Ab initio design of drug carriers for zoledronate guest molecule using phosphonated and sulfonated calix[4]arene and calix[4]resorcinarene host molecules

  • Computation
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Monomolecular drug carriers based on calix[n]arenes and calix[n]resorcinarenes containing the interior cavity can enhance the affinity and specificity of the osteoporosis inhibitor drug zoledronate (ZOD). In this work, we investigated the suitability of nine different calix[4]arenes- and calix[4]resorcinarenes-based macrocycles as hosts for the ZOD guest molecule by conducting ab initio density functional theory calculations for structures and energetics of eighteen different host-guest complexes. For the optimized molecular structures of the free, phosphonated, sulfonated calix[4]arenes and calix[4]resorcinarenes, the geometric sizes of their interior cavities were measured and compared with those of the host-guest complexes in order to check the appropriateness for host-guest complex formation. Our calculations of binding energies indicated that in gaseous states some of the complexes might be unstable but in aqueous states almost all of the complexes can be formed spontaneously. Of the two different docking ways, the insertion of ZOD with the P–O–P branch into the cavity of host was easier than that with the nitrogen-containing heterocycle of ZOD. The work will open a way for developing effective drug delivering systems for the ZOD drug and promote experimentalists to synthesize them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Russell RGG (2011) Bisphosphonates: the first 40 years. Bone 49:2–19

    Article  Google Scholar 

  2. Bartl R, Frisch B, von Tresckow E, Bartl C (2007) Bisphosphonates in medical practice. Springer, Berlin

    Book  Google Scholar 

  3. Green JR, Muller K, Jaeggi KA (1994) Preclinical pharmacology of CGP 42 446, a new, potent, heterocyclic bisphosphonate compound. J Bone Miner Res 9:745–751

    Article  Google Scholar 

  4. Nancollas GH, Tang R, Phipps RJ, Henneman Z, Gulde S, Wu W, Mangood A, Russell RGG, Ebetino FH (2006) Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. Bone 38:617

    Article  Google Scholar 

  5. Ebetino FH, Hogan AML, Sun S, Tsoumpra MK, Duan X, Triftt JT, Kwaasi AA, Dunford JE, Barnett BL, Oppermann U, Lundy MW, Boyde A, Kashemirov BA, McKenna CE, Russell RGG (2011) The relationship between the chemistry and biological activity of the bisphosphonates. Bone 49:20–33

    Article  Google Scholar 

  6. Ri MH, Yu CJ, Jang YM, Kim SU (2016) Ab initio investigation of the adsorption of zoledronic acid molecule on hydroxyapatite (001) surface: an atomistic insight of bone protection. J Mater Sci 51:3125–3135. https://doi.org/10.1007/s10853-015-9622-8

    Article  Google Scholar 

  7. Merino P, Maiuolo L, Delso I, Algieri V, Nino AD, Tejero T (2017) Chemical approaches to inhibitors of isoprenoid biosynthesis: targeting farnesyl and geranylgeranyl pyrophosphate synthases. RSC Adv 7:10947

    Article  Google Scholar 

  8. Pascaud P, Errassifi F, Brouillet F, Sarda S, Barroug A, Legrouri A, Rey C (2014) Adsorption on apatitic calcium phosphates for drug delivery: interaction with bisphosphonate molecules. J Mater Sci Mater Med 25:2373–2381

    Article  Google Scholar 

  9. Bae Y, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153:198–205

    Article  Google Scholar 

  10. Dreher M, Liu W, Michelich C (2006) Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 98:335–344

    Article  Google Scholar 

  11. Tu C, Zhu L, Li P, Chen Y, Su Y, Yan D, Zhu X, Zhou G (2011) Supramolecular polymeric micelles by the host–guest interaction of star-like calix[4]arene and chlorin e6 for photodynamic therapy. Chem Commun 47:6063–6065

    Article  Google Scholar 

  12. Laza-Knoerr AL, Gref R, Couvreur P (2010) Cyclodextrins for drug delivery. J Drug Target 18:645–656

    Article  Google Scholar 

  13. Yin H, Wang R (2017) Applications of cucurbit[n]urils (n = 7 or 8) in pharmaceutical science and complexation of biomolecules. Isr J Chem. https://doi.org/10.1002/ijch.201700092

    Google Scholar 

  14. Kuok K, Li S, Wyman W, Wang R (2017) Cucurbit[7]uril: an emerging candidate for pharmaceutical excipients. Ann NY Acad Sci 1398:108–119

    Article  Google Scholar 

  15. Gutsche CD (2008) Calixarenes: an introduction. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  16. Sliwa W, Kozlowski C (2009) Calixarenes and resorcinarenes: synthesis, properties and applications, vol 1. Wiley-VCH, Weinheim

    Google Scholar 

  17. Redshaw C (2003) Coordination chemistry of the larger calixarenes. Coord Chem Rev 244:45–70

    Article  Google Scholar 

  18. Hong J, Ham S (2008) Comparative study of calix[4]arene derivatives: implications for ligand design. Tetrahedron Lett 49:2393–2386

    Article  Google Scholar 

  19. Mutihac L, Lee JH, Kim JS, Vicens J (2011) Recognition of amino acids by functionalized calixarenes. Chem Soc Rev 40:2777–2796

    Article  Google Scholar 

  20. Joseph R, Chinta JP, Rao CP (2010) Benzothiazole appended lower rim 1,3-diamido-derivative of calix[4]arene: synthesis, structure, receptor properties towards Cu2+, iodide recognition and computational modeling. Inorg Chim Acta 363:2833–2839

    Article  Google Scholar 

  21. Ikeda A, Shinkai S (1997) Novel cavity design using calix[n]arene skeletons: towards molecular recognition and metal binding. Chem Rev 97:1713–1734

    Article  Google Scholar 

  22. Rodik RV, Boyko VI, Kalchenko VI (2009) Calixarenes in bio-medical research. Curr Med Chem 16:1630–1655

    Article  Google Scholar 

  23. Varejao EVV, de Fátima A, Fernadez SA (2013) Calix[n]arenes as goldmines for the development of chemical entities of pharmaceutical interest. Curr Pharm Des 19:6507–6521

    Article  Google Scholar 

  24. Hoskins C, Curtis ADM (2015) Simple calix[n]arenes and calix[4]resorcinarenes as drug solubilizing agents. J Nanomed Res 2:28

    Google Scholar 

  25. Morozova JE, Syakaev VV, Kazakova EK, Shalaeva YV, Nizameev IR, Kadirov MK, Voloshina AD, Zobov VV, Konovalov AI (2016) Amphiphilic calixresorcinarene associates as effective solubilizing agents for hydrophobic organic acids: construction of nano-aggregates. Soft Matter 12:5990

    Article  Google Scholar 

  26. Perret F, Coleman AW (2011) Biochemistry of anionic calix[n]arenes. Chem Commun 47:7303–7319

    Article  Google Scholar 

  27. Martin AD, Houlihan E, Morellini N, Eggers PK, James E, Stubbs KA, Harvey AR, Fitzgerald M, Raston CL, Dunlop SA (2012) Synthesis and toxicology of p-phosphonic acid calixarenes and O-alkylated analogues as potential calixarene-based phospholipids. ChemPlusChem 77:308–313

    Article  Google Scholar 

  28. Shahgaldian P, Silva ED, Coleman AW (2003) A first approach to the study of calixarene solid lipid nanoparticle (SLN) toxicity. J Inclusion Phenom 46:175–177

    Article  Google Scholar 

  29. Horvat G, Frkanec L, Cindro N, Tomišić V (2017) A comprehensive study of the complexation of alkali metal cations by lower rim calix[4]arene amide derivatives. Phys Chem Chem Phys 19:24316–24329

    Article  Google Scholar 

  30. de Lara LS, Wrobel EC, Lazzarotto M, de Lázaro SR, Camilo A, Wohnrath K (2016) An experimental and theoretical study of the aggregate structure of calix[6]arenes in Langmuir films at the water/air interface. Phys Chem Chem Phys 18:22906–22913

    Article  Google Scholar 

  31. Wheate NJ, Abbott GM, Tate RJ, Clements CJ, Edrada-Ebel R, Johnston BF (2009) Side-on binding of p-sulphonatocalix[4]arene to the dinuclear platinum complex trans-\([{\text{P}}_{\text{t}}{\text{Cl}}({\text{NH}}_{3})_{22} \mu {\text{-dpzm}}]^{2+}\) and its implications for anticancer drug delivery. J Inorg Biochem 103:448–454

    Article  Google Scholar 

  32. Mendez-Arroyo J, Barroso-Flores J, Lifschitz AM, Sarjeant AA, Stern CL, Mirkin CA (2014) A multi-state, allosterically-regulated molecular receptor with switchable selectivity. J Am Chem Soc 136:10340–10348

    Article  Google Scholar 

  33. Adhikari BB, Roshandel S, Fujii A, Schramm MP (2015) Calixarene-mediated liquid membrane transport of choline conjugates 2: transport of drug-choline conjugates and neurotransmitters. Eur J Org Chem 12:2683–2690

    Article  Google Scholar 

  34. Adhikari BB, Fujii A, Schramm MP (2014) Calixarene‐mediated liquid‐membrane transport of choline conjugates. Eur J Org Chem 14:2972–2979

    Article  Google Scholar 

  35. Bayrakci M, Ertul S, Yilmaz M (2011) Transportation of poorly soluble drug molecules from the organic phase to the aqueous phase by using phosphorylated calixarenes. J Chem Eng Data 56:4473–4479

    Article  Google Scholar 

  36. Bayrakci M, Ertul S, Yilmaz M (2012) Phase solubility studies of poorly soluble drug molecules by using O-phosphorylated calixarenes as drug-solubilizing agents. J Chem Eng Data 57:233–239

    Article  Google Scholar 

  37. Yang W, de Villiers MM (2004) The solubilization of the poorly water soluble drug nifedipine by water soluble 4-sulphonic calix-[n]arenes. Eur J Pharm Biopharm 58:629–636

    Article  Google Scholar 

  38. Sautrey G, Clarot I, Rogalska E, de Vains JBR (2012) New potential prodrugs of aciclovir using calix[4]arene as a lipophilic carrier: synthesis and drug-release studies at the air-water interface. New J Chem 36:2060–2069

    Article  Google Scholar 

  39. Huggins DJ, Sherman W, Tidor B (2012) Rational approaches to improving selectivity in drug design. J Med Chem 55:1424–1444

    Article  Google Scholar 

  40. Muro S (2012) Challenges in design and characterization of ligand-targeted drug delivery systems. J Control Release 164:125–137

    Article  Google Scholar 

  41. Wang K, Guo DS, Wang X, Liu Y (2011) Multistimuli responsive supramolecular vesicles based on the recognition of p-sulfonatocalixarene and its controllable release of doxorubicin. ACS Nano 5:2880–2894

    Article  Google Scholar 

  42. Guo DS, Wang K, Wang YX, Liu Y (2012) Cholinesterase-responsive supramolecular vesicle. J Am Chem Soc 134:10244–10250

    Article  Google Scholar 

  43. Guo DS, Liu Y (2014) Supramolecular chemistry of p-sulfonatoclix[n]arenes and its biological applications. Acc Chem Res 47:1925–1934

    Article  Google Scholar 

  44. Galindo-Murillo R, Olmedo-Romero A, Cruz-Flores E, Petrar PM, Kunsagi-Mate S, Barroso-Flores J (2014) Calix[n]arene-based drug carriers: a DFT study of their electronic interactions with a chemotherapeutic agent used against leukemia. Comput Theor Chem 1035:84–91

    Article  Google Scholar 

  45. Galindo-Murillo R, Sandoval-Salinas ME, Barroso-Flores J (2014) In silico design of monomolecular drug carriers for the tyrosine kinase inhibitor drug imatinib based on calix- and thiacalix[n]arene host molecules: a DFT and molecular dynamics study. J Chem Theory Comput 10:825–834

    Article  Google Scholar 

  46. Makrlík E, Toman P, Vaňura P (2012) Complexation of the lithium cation with beauvericin: experimental and DFT study. J Mol Struct 1024:142–145

    Article  Google Scholar 

  47. Makrlík E, Toman P, Vaňura P, Moyer BA (2012) Interaction of the cesium cation with calix[4]arene-bis(t-octylbenzo-18-crown-6): extraction and DFT study. J Mol Struct 1024:14–18

    Article  Google Scholar 

  48. Makrlík E, Dybal J, Vaňura P (2013) Interaction of the thallium cation with 1,3-alternate-25,27-bis(1-octyloxy)calix[4]arene-crown-6: experimental and theoretical study. J Mol Struct 1042:74–77

    Article  Google Scholar 

  49. Bayrakdar A, Kart HH, Elcin S, Deligoz H, Karabacak M (2015) Synthesis and DFT calculation of a novel 5,17-di(2-antracenylazo)-25,27-di(ethoxycarbonylmethoxy)-26,28-dihydroxycali. Spectrochim Acta A 136:607–617

    Article  Google Scholar 

  50. Venkataramanan NS, Sahara R, Mizuseki H, Kawazoe Y (2010) Quantum chemical study on the alkali atom doped calix[4]arene as hydrogen storage material. Comput Mater Sci 49:S263–S267

    Article  Google Scholar 

  51. Suwattanamala A, Magalhaes ALM, Gomes JANF (2005) Computational study of calix[4]arene derivatives and complexation with Zn2+. Chem Phys 310:109–122

    Article  Google Scholar 

  52. Hermann J, Alfè D, Tkatchenko A (2017) Nanoscale \(\pi {-}\pi \) stacked molecules are bound by collective charge fluctuations. Nat Commun 8:14052

    Article  Google Scholar 

  53. Schubert F, Rossi M, Baldauf C, Pagel K, Warnke S, von Helden G, Filsinger F, Kupser P, Meijer G, Salwiczek M, Koksch B, Scheffler M, Blum V (2015) Exploring the conformational preferences of 20-residue peptides in isolation: Ac-Ala19-Lys + H+ vs.. Ac-Lys-Ala19 + H+ and the current reach of DFT. Phys Chem Chem Phys 17:7373

    Article  Google Scholar 

  54. Carter DJ, Rohl AL (2012) Noncovalent interactions in SIESTA using the vdW-DF functional: S22 benchmark and macrocyclic structures. J Chem Theory Comput 8:281–289

    Article  Google Scholar 

  55. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The Siesta method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745

    Article  Google Scholar 

  56. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006

    Article  Google Scholar 

  57. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  Google Scholar 

  58. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:786

    Google Scholar 

  59. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  Google Scholar 

  60. Klamt A, Schürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the State Committee of Science and Technology, Democratic People’s Republic of Korea. Computation was done on the HP Blade System C7000 (HP BL460c) that is owned by Faculty of Materials Science, Kim Il Sung University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chol-Jun Yu.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, YM., Yu, CJ., Kim, JS. et al. Ab initio design of drug carriers for zoledronate guest molecule using phosphonated and sulfonated calix[4]arene and calix[4]resorcinarene host molecules. J Mater Sci 53, 5125–5139 (2018). https://doi.org/10.1007/s10853-017-1930-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1930-8

Keywords

Navigation