Skip to main content
Log in

High-temperature stress-dependent piezoelectric and dielectric coefficient of soft Pb(Zr,Ti)O3

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The dielectric constant and the direct piezoelectric coefficient as well as the macroscopic ferroelastic behavior of co-doped Pb(Zr,Ti)O3 were characterized from 25 to 350 °C as a function of uniaxial compressive stress. Experimental results show a decrease in the small signal piezoelectric coefficient and the permittivity with stress, although there exists a uniaxial compressive stress that significantly reduces the variation of the piezoelectric coefficient with increasing temperature, making it a possible method for sensors that operate over a large temperature range. In the vicinity of the depolarization temperature, the piezoelectric response rapidly decreases. This temperature, however, was observed well below the temperature at maximum permittivity. Experimental results reveal that uniaxial compressive stress shifts the temperature at maximum permittivity, giving insight into the effect of stress on the phase transition behavior in Pb(Zr,Ti)O3, but does not apparently influence the depolarization temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zhang ST, Kounga AB, Aulbach E, Ehrenberg H, Rödel J (2007) Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system. Appl Phys Lett 91:112906

    Article  Google Scholar 

  2. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432:84–87

    Article  Google Scholar 

  3. Liu WF, Ren XB (2009) Large piezoelectric effect in Pb–free ceramics. Phys Rev Lett 103:257602

    Article  Google Scholar 

  4. Schäufele AB, Härdtl KH (1996) Ferroelastic properties of lead zirconate titanate ceramics. J Am Ceram Soc 79:2637–2640

    Article  Google Scholar 

  5. Webber KG, Aulbach E, Key T, Marsilius M, Granzow T, Rödel J (2009) Temperature-dependent ferroelastic switching of soft lead zirconate titanate. Acta Mater 57:4614–4623

    Article  Google Scholar 

  6. Merz WJ (1950) The effect of hydrostatic pressure on the Curie point of barium titanate single crystals. Phys Rev 78:52–54

    Article  Google Scholar 

  7. Seo Y-H, Franzbach DJ, Koruza J, Benčan A, Malič B, Kosec M, Jones JL, Webber KG (2013) Nonlinear stress-strain behavior and stress-induced phase transitions in soft Pb(Zr1−xTix)O3 at the morphotropic phase boundary. Phys Rev B 87:094116

    Article  Google Scholar 

  8. Tan X, Frederick J, Ma C, Aulbach E, Marsilius M, Hong W, Granzow T, Jo W, Rodel J (2010) Electric-field-induced antiferroelectric to ferroelectric phase transition in mechanically confined Pb0.99Nb0.02[(Zr0.57Sn0.43)0.94Ti0.06]0.98O3. Phys Rev B 81:014103

    Article  Google Scholar 

  9. Kerkamm I, Hiller P, Granzow T, Rödel J (2009) Correlation of small- and large-signal properties of lead zirconate multilayer actuators. Acta Mater 57:77–86

    Article  Google Scholar 

  10. Randall CA, Kelnberger A, Yang GY, Eitel RE, Shrout TR (2005) High strain piezoelectric multilayer actuators-A material science and engineering challenge. J Electroceram 14:177–191

    Article  Google Scholar 

  11. Damjanovic D (2005) Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J Am Ceram Soc 88:2663–2676

    Article  Google Scholar 

  12. Jones JL, Aksel E, Tutuncu G, Usher TM, Chen J, Xing XR, Studer AJ (2012) Domain wall and interphase boundary motion in a two-phase morphotropic phase boundary ferroelectric: frequency dispersion and contribution to piezoelectric and dielectric properties. Phys Rev B 86:024104

    Article  Google Scholar 

  13. Damjanovic D, Demartin M (1997) Contribution of the irreversible displacement of domain walls to the piezoelectric effect in barium titanate and lead zirconate titanate ceramics. J Phys: Condens Matter 9:4943–4953

    Google Scholar 

  14. Randall CA, Kim N, Kucera JP, Cao WW, Shrout TR (1998) Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J Am Ceram Soc 81:677–688

    Article  Google Scholar 

  15. Robels U, Arlt G (1993) Domain-wall clamping in ferroelectrics by orientation of defects. J Appl Phys 73:3454–3460

    Article  Google Scholar 

  16. Hall DA, Steuwer A, Cherdhirunkorn B, Withers PJ, Mori T (2005) Micromechanics of residual stress and texture development due to poling in polycrystalline ferroelectric ceramics. J Mech Phys Solids 53:249–260

    Article  Google Scholar 

  17. Arlt G, Hennings D, de With G (1985) Dielectric properties of fine-grained barium titanate ceramics. J Appl Phys 58:1619–1625

    Article  Google Scholar 

  18. Warren WL, Pike GE, Vanheusden K, Dimos D, Tuttle BA, Robertson J (1996) Defect-dipole alignment and tetragonal strain in ferroelectrics. J Appl Phys 79:9250–9257

    Article  Google Scholar 

  19. Arlt G, Neumann H (1988) Internal bias in ferroelectric ceramics—origin and time-dependence. Ferroelec 87:109–120

    Article  Google Scholar 

  20. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London

    Google Scholar 

  21. Damjanovic D (1998) Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys 61:1267–1324

    Article  Google Scholar 

  22. Anton E-M, Jo W, Damjanovic D, Rödel J (2011) Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics. J Appl Phys 110:094108

    Article  Google Scholar 

  23. Shin Y-H, Grinberg I, Chen IW, Rappe AM (2007) Nucleation and growth mechanism of ferroelectric domain-wall motion. Nature 449:881–884

    Article  Google Scholar 

  24. Kounga Njiwa AB, Granzow T, Aulbach E, Hinterstein M, Rödel J (2008) High-temperature poling of ferroelectrics. J Appl Phys 104:024116

    Article  Google Scholar 

  25. Foronda H, Deluca M, Aksel E, Forrester JS, Jones JL (2014) Thermally-induced loss of piezoelectricity in ferroelectric Na0.5Bi0.5TiO3–BaTiO3. Mater Lett 115:132–135

    Article  Google Scholar 

  26. Chen J, Shi H, Liu G, Cheng J, Dong S (2012) Temperature dependence of dielectric, piezoelectric and elastic properties of BiScO3–PbTiO3 high temperature ceramics with morphotropic phase boundary (MPB) composition. J Alloys Compd 537:280–285

    Article  Google Scholar 

  27. Wang K, Yao F-Z, Jo W, Gobeljic D, Shvartsman VV, Lupascu DC, Li J-F, Roedel J (2013) Temperature-insensitive (K, Na)NbO3-based lead-free piezoactuator ceramics. Adv Func Mater 23:4079–4086

    Article  Google Scholar 

  28. Caspari ME, Merz WJ (1950) The electromechanical behavior of BaTiO3 single-domain crystals. Phys Rev 80:1082–1089

    Article  Google Scholar 

  29. Zhang QM, Zhao J, Uchino K, Zheng J (1997) Change of the weak-field properties of Pb(ZrTi)O3 piezoceramics with compressive uniaxial stresses and its links to the effect of dopants on the stability of the polarizations in the materials. J Mater Res 12:226–234

    Article  Google Scholar 

  30. Ochoa DA, Garcia JE, Tamayo I, Gomis V, Damjanovic D, Perez R (2012) Effect of uniaxial compressive stress on dielectric and piezoelectric responses in lead zirconate titanate based ceramics. J Am Ceram Soc 95:1656–1660

    Article  Google Scholar 

  31. Schader FH, Aulbach E, Rossetti GA Jr, Webber KG (2013) Influence of uniaxial stress on the ferroelectric-to-paraelectric phase change in barium titanate. J Appl Phys 113:174103

    Article  Google Scholar 

  32. Kounga Njiwa AB, Fett T, Lupascu DC, Rödel J (2003) Crack-tip toughness of a soft lead zirconate titanate. J Am Ceram Soc 86:1973–1975

    Article  Google Scholar 

  33. Zhou D, Kamlah M, Munz D (2004) Uniaxial compressive stress dependence of the high-field dielectric and piezoelectric performance of soft PZT piezoceramics. J Mater Res 19:834–842

    Article  Google Scholar 

  34. Zhou D, Wang R, Kamlah M (2010) Determination of reversible and irreversible contributions to the polarization and strain response of soft PZT using the partial unloading method. J Eur Ceram Soc 30:2603–2615

    Article  Google Scholar 

  35. Xu BX, Schrade D, Müller R, Gross D, Granzow T, Rödel J (2010) Phase field simulation and experimental investigation of the electro-mechanical behavior of ferroelectrics. ZAMM: J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 90:623–632

    Article  Google Scholar 

  36. Stark S, Neumeister P, Balke H (2013) On the prediction of R-curves for ferroelectroelastic ceramics. J Appl Mech 81:021012

    Article  Google Scholar 

  37. Webber KG, Aulbach E, Key T, Marsilius M, Granzow T, Rödel J (2009) Temperature-dependent ferroelastic switching of soft lead zirconate titanate. Acta Mater 57:4614–4623

    Article  Google Scholar 

  38. Schader FH, Morozov M, Wefring ET, Grande T, Webber KG (2015) Mechanical stability of piezoelectric properties in ferroelectric perovskites. J Appl Phys 117:194101

    Article  Google Scholar 

  39. Cordero F, Craciun F, Galassi C (2007) Low-temperature phase transformations of PbZr1−xTixO3 in the morphotropic phase-boundary region. Phys Rev Lett 98:255701

    Article  Google Scholar 

  40. Xue D, Balachandran P, Yuan R, Hu T, Qian X, Dougherty E, Lookman T (2016) Accelerated search for BaTiO3-based piezoelectrics with vertical morphotropic phase boundary using Bayesian learning. Proc Natl Acad Sci USA 113:13301–13306

    Article  Google Scholar 

  41. Esteves G, Fancher CM, Röhrig S, Maier GA, Jones JL, Deluca M (2017) Electric-field-induced structural changes in multilayer piezoelectric actuators during electrical and mechanical loading. Acta Mater 132:96–105

    Article  Google Scholar 

  42. Morozov MI, Damjanovic D (2008) Hardening-softening transition in Fe-doped Pb(Zr, Ti)O3 ceramics and evolution of the third harmonic of the polarization response. J Appl Phys 104:034107

    Article  Google Scholar 

  43. Porokhonskyy V, Jin L, Damjanovic D (2009) Separation of piezoelectric grain resonance and domain wall dispersion in Pb(Zr, Ti)O3 ceramics. Appl Phys Lett 94:212906

    Article  Google Scholar 

  44. V-c Lo, Chung WW, Cao H, Dai X (2008) Investigating the effect of oxygen vacancy on the dielectric and electromechanical properties in ferroelectric ceramics. J Appl Phys 104:064105

    Article  Google Scholar 

  45. Chen L, Liang R, Wang G, Nie H, Zhou Z, Cao F, Dongn X (2013) Poling induced dielectric anomalies in a PZT ceramic. Ceram Int 39:8941–8944

    Article  Google Scholar 

  46. Hinterstein M, Rouquette J, Haines J, Papet P, Knapp M, Glaum J, Fuess H (2011) Structural description of the macroscopic piezo- and ferroelectric properties of lead zirconate titanate. Phys Rev Lett 107:077602

    Article  Google Scholar 

  47. Physik Instrumente (PI) GmbH & Co. KG

  48. Sundar V, Newnham RE (1992) Electrostriction and polarization. Ferroelectrics 135:431–446

    Article  Google Scholar 

  49. Dittmer R, Webber KG, Aulbach E, Jo W, Tan X, Rödel J (2013) Optimal working point and electrostriction of lead-zirconate-titanate. Sensors Act A: Phys 189:187–194

    Article  Google Scholar 

  50. Weaver PM, Cain MG, Stewart M (2010) Temperature dependence of high field electromechanical coupling in ferroelectric ceramics. J Phys D Appl Phys 43:165404

    Article  Google Scholar 

  51. Liu G, Zhang S, Jiang W, Cao W (2015) Losses in ferroelectric materials. Mater Sci Eng: R: Rep 89:1–48

    Article  Google Scholar 

  52. Forsbergh PW Jr (1953) Effect of a two-dimensional pressure on the Curie point of barium titanate. Phys Rev 93:686–692

    Article  Google Scholar 

  53. Samara GA (1966) Pressure and temperature dependence of the dielectric properties of the perovskite BaTiO3 and SrTiO3. Phys Rev 151:378–386

    Article  Google Scholar 

  54. Samara GA (1971) Pressure and temperature dependence of the dielectric properties and phase transitions of the ferroelectric perovskites: PbTiO3 and BaTiO3. Ferroelectrices 2:277–289

    Article  Google Scholar 

  55. Hoffmann MJ, Hammer M, Endriss A, Lupascu DC (2001) Correlation between microstructure, strain behavior, and acoustic emission of soft PZT ceramics. Acta Mater 49:1301–1310

    Article  Google Scholar 

  56. Fett T, Munz D, Thun G (2002) Young’s modulus of soft PZT from partial unloading test. Ferroelectr 274:67–81

    Article  Google Scholar 

  57. Seo Y-H, Vögler M, Isaia D, Aulbach E, Rödel J, Webber KG (2013) Temperature-dependent R-curve behavior of Pb(Zr1−xTix)O3. Acta Mater 61:6418–6427

    Article  Google Scholar 

  58. Kim S-J, Ji DW (2013) Temperature-dependent compressive creep of ferroelectric ceramics and evolution of remnant state variables. J Eur Ceram Soc 33:1779–1792

    Article  Google Scholar 

  59. Ji DW, Kim S-J (2014) Evolution of remnant state variables and linear material properties in ferroelectric ceramics during compressive loading and unloading. Ceram Int 40:331–339

    Article  Google Scholar 

  60. Marsilius M, Webber KG, Aulbach E, Granzow T (2010) Comparison of the temperature-dependent ferroelastic behavior of hard and soft PZT ceramics. J Am Ceram Soc 93:2850–2856

    Article  Google Scholar 

  61. Leist T, Webber KG, Jo W, Granzow T, Aulbach E, Suffner J, Rödel J (2011) Domain switching energies: mechanical vs. electrical loading in La-doped bismuth ferrite: lead titanate. J Appl Phys 109:054109

    Article  Google Scholar 

  62. Hall DA (2001) Nonlinearity in piezoelectric ceramics. J Mater Sci 36:4575–4601. https://doi.org/10.1023/A:1017959111402

    Article  Google Scholar 

  63. Damjanovic D (1997) Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics. J Appl Phys 82:1788–1797

    Article  Google Scholar 

  64. Garcia JE, Ochoa DA, Gomis V, Eiras JA, Perez R (2012) Evidence of temperature dependent domain wall dynamics in hard lead zirconate titanate piezoceramics. J Appl Phys 112:014113

    Article  Google Scholar 

  65. Kungl H, Hoffmann MJ (2007) Temperature dependence of poling strain and strain under high electric fields in LaSr-doped morphotropic PZT and its relation to changes in structural characteristics. Acta Mater 55:5780–5791

    Article  Google Scholar 

  66. Zhou D, Wang R, Kamlah M (2010) Determination of reversible and irreversible contributions to the polarization and strain response of soft PZT using the partial unloading method. J Euro Ceram Soc 30:2603–2615

    Article  Google Scholar 

  67. Ehmke MC, Daniels J, Glaum J, Hoffman M, Blendell JE, Bowman KJ (2012) Reduction of the piezoelectric performance in lead-free (1−x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 piezoceramics under uniaxial compressive stress. J Appl Phys 112:114108

    Article  Google Scholar 

  68. Li YW, Zhou XL, Li FX (2010) Temperature-dependent mechanical depolarization of ferroelectric ceramics. J Phys D Appl Phys 43:175501

    Article  Google Scholar 

  69. Haeni JH, Irvin P, Chang W, Uecker R, Reiche P, Li YL, Choudhury S, Tian W, Hawley ME, Craigo B, Tagantsev AK, Pan XQ, Streiffer SK, Chen LQ, Kirchoefer SW, Levy J, Schlom DG (2004) Room-temperature ferroelectricity in strained SrTiO3. Nature 430:758–761

    Article  Google Scholar 

  70. Choi KJ, Biegalski M, Li YL, Sharan A, Schubert J, Uecker R, Reiche P, Chen YB, Pan XQ, Gopalan V, Chen LQ, Schlom DG, Eom CB (2004) Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306:1005–1009

    Article  Google Scholar 

  71. Davis M, Damjanovic D, Setter N (2006) Electric field-, temperature-, and stress-induced phase transitions in relaxor ferroelectric single crystals. Phys Rev B 73:014115

    Article  Google Scholar 

  72. Samara GA (2003) The relaxational properties of compositionally disordered ABO3 perovskites. J Phys: Condens Matter 15:R367–R411

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support of this work by the Deutsche Forschungsgemeinschaft under WE 4972/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle G. Webber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schader, F.H., Isaia, D., Weber, M. et al. High-temperature stress-dependent piezoelectric and dielectric coefficient of soft Pb(Zr,Ti)O3 . J Mater Sci 53, 3296–3308 (2018). https://doi.org/10.1007/s10853-017-1817-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1817-8

Keywords

Navigation