Skip to main content
Log in

Effect of mechanical depoling on piezoelectric properties of Na0.5Bi0.5TiO3xBaTiO3 in the morphotropic phase boundary region

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of mechanical stress on the direct piezoelectric properties of pre-poled (1 − x)(Na0.5Bi0.5)TiO3xBaTiO3 (NBT–xBT) in the range 4% ≤ x ≤ 13% was studied in situ using a mechanical load frame. Prior to mechanical loading, compositions near the morphotropic phase boundary (MPB, x = 6–7% BT) exhibited enhanced ferroelectric and piezoelectric properties compared to compositions further from the MPB. Specifically, the lowest ferroelectric coercive field and highest piezoelectric coefficient within this composition range occur at x = 7% BT. During mechanical compression, the MPB compositions exhibited the lowest depoling stress. The results demonstrate that, while favorable piezoelectric and ferroelectric properties can be obtained at compositions near the MPB, these compositions are also the most susceptible to the effects of mechanical depoling. Ferroelastic domain wall motion is suggested as the primary factor that may be responsible for these behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Haertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82:797–818

    Article  Google Scholar 

  2. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London, p 136

    Google Scholar 

  3. EU-Directive (2003) 2002/96/EC: restrictions on the use of certain hazardous substances in electrical and electronic equipment (RoHS). Off J Eur Union 46(L37):19–23

    Google Scholar 

  4. Takenaka T, Maruyama K-I, Sakata K (1991) (Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys 30(9B):2236–2239

    Article  Google Scholar 

  5. Aksel E, Jones JL (2010) Advances in lead-free piezoelectric materials for sensors and actuators. Sensors 10:1935–1954

    Article  Google Scholar 

  6. Safari A, Akdogan EK (eds) (2008) Piezoelectric and acoustic materials for transducer applications. Springer, New Jersey

    Google Scholar 

  7. Jaffe B, Roth RS, Marzullo S (1954) Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J Appl Phys 25:809

    Article  Google Scholar 

  8. Shrout TR, Zhang SJ (2007) Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceram 19:111–124

    Article  Google Scholar 

  9. Jones JL, Aksel E, Tutuncu G, Usher TM, Chen J, Xing X, Studer AJ (2012) Domain wall and interphase boundary motion in a two-phase morphotropic phase boundary ferroelectric: frequency dispersion and contribution to piezoelectric and dielectric properties. Phys Rev B 86:024104

    Article  Google Scholar 

  10. Noheda B, Cox DE, Shirane G, Gonzalo JA, Cross LE, Park S-E (1999) A monoclinic ferroelectric phase in the Pb(Zr1 − x Ti x )O3 solid solution. Appl Phys Lett 74:2059

    Article  Google Scholar 

  11. Aksel E, Forrester JS, Jones JL, Thomas PA, Page K, Suchomel MR (2011) Monoclinic crystal structure of polycrystalline Na0.5Bi0.5TiO3. Appl Phys Lett 98:152901

    Article  Google Scholar 

  12. Yao J, Monsegue N, Murayama M, Leng W, Reynolds WT, Zhang Q, Luo H, Li J-F, Ge W, Viehland D (2012) Role of coexisting tetragonal regions in the rhombohedral phase of Na0.5Bi0.5TiO3xat.%BaTiO3 crystals on enhanced piezoelectric properties on approaching the morphotropic phase boundary. Appl Phys Lett 100:012901

    Article  Google Scholar 

  13. Damjanovic D (2005) Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J Am Ceram Soc 88:2663–2676

    Article  Google Scholar 

  14. Forrester JS, Kisi EH, Studer AJ (2005) Direct observation of ferroelastic domain switching in polycrystalline BaTiO3 using in situ neutron diffraction. J Eur Ceram Soc 25:447–454

    Article  Google Scholar 

  15. Pojprapai S, Luo Z, Clausen B, Vogel SC, Brown DW, Russel J, Hoffman M (2010) Dynamic processes of domain switching in lead zirconate titanate under cyclic mechanical loading by in situ neutron diffraction. Acta Mater 58:1897–1908

    Article  Google Scholar 

  16. Jones JL, Hoffman M, Daniels JE, Studer AJ (2006) Ferroelastic contribution to the piezoelectric response in lead zirconate titanate by in situ stroboscopic neutron diffraction. Phys B 385–386:100–102

    Article  Google Scholar 

  17. Jones JL, Hoffman M, Vogel SC (2007) Ferroelastic domain switching in load zirconate titanate measured by in situ neutron diffraction. Mech Mater 9:283–290

    Article  Google Scholar 

  18. Tai W-P, Kim S-H (1996) Relationship between cyclic loading and degradation of piezoelectric properties in Pb(Zr, Ti)O3 ceramics. Mater Sci Eng B 38:182–185

    Article  Google Scholar 

  19. Zhang QM, Zhao J (1999) Electromechanical properties of lead zirconate titanate piezoceramics under the influence of mechanical stresses. IEEE Trans Ultrason Ferroelectr Freq Control 46:1518–1526

    Article  Google Scholar 

  20. Takenaka T, Maruyama K, Sakata K (1991) (Bi(1/2)Na(1/2))TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys 30:2236

    Article  Google Scholar 

  21. Berlincourt D, Krueger HHA (1959) Domain processes in lead titanate zirconate and barium titanate ceramics. J Appl Phys 30(11):1804–1810

    Article  Google Scholar 

  22. Krueger HHA, Berlincourt D (1961) Effects of high stress on the piezoelectric properties of transducer materials. J Acoust Soc Am 33(10):1339–1344

    Article  Google Scholar 

  23. Seo Y-H, Franzbach DJ, Koruza J, Bencan A, Malic B, Kosec M, Jones JL, Webber KG (2013) Nonlinear stress-strain behaviour and stress-induced phase transitions in soft Pb(Zr1 − x Ti x )O3 at the morphotropic phase boundary. Phys Rev B 87:094116

    Article  Google Scholar 

  24. Cao H, Evans AG (1993) Nonlinear deformation of ferroelectric ceramics. J Am Ceram Soc 76:890–896

    Article  Google Scholar 

  25. Webber KG, Vogler M, Khansur NH, Kaeswurm B, Daniels JE, Schader FH (2017) Review of the mechanical and fracture behavior of perovskite lead-free ferroelectrics for actuator applications. Smart Mater Struct 26(063001):1–28

    Google Scholar 

  26. Denkhaus SM, Vogler M, Novak N, Rodel J (2017) Short crack fracture toughness in (1 − x)(Na1/2Bi1/2)TiO3xBaTiO3 relaxor ferroelectrics. J Am Ceram Soc. doi:10.1111/jace.15008

    Google Scholar 

  27. Wook J, Daniels JE, Jones JL, Tan X, Thomas PA, Damjanovic D, Rodel J (2011) Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3–BaTiO3 piezoceramics. J Appl Phys 109:014110

    Article  Google Scholar 

  28. Esteves G, Fancher CM, Röhrig S, Maier G, Jones JL, Deluca M (2017) Electric-field-induced structural changes in multi-layer piezoelectric actuators during electrical and mechanical loading. Acta Mater 132:96–105. doi:10.1016/j.actamat.2017.04.014

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the National Science Foundation under award number OISE-1129412 and OISE-1357113, the Australian Research Council under award numbers DP0988182, DP120103968 and DE120102644, the EU call H2020- MSCA-IF-2014 under Grant No. 655866, and the University of Florida’s Ronald E. McNair Post-Baccalaureate Achievement Program under award number P217A120268.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob L. Jones.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1265 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denis, L.M., Glaum, J., Hoffman, M. et al. Effect of mechanical depoling on piezoelectric properties of Na0.5Bi0.5TiO3xBaTiO3 in the morphotropic phase boundary region. J Mater Sci 53, 1672–1679 (2018). https://doi.org/10.1007/s10853-017-1616-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1616-2

Keywords

Navigation