Skip to main content
Log in

Optimized synthesis method for K/Co3O4 catalyst towards direct decomposition of N2O

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The potassium-doped Co3O4 catalysts were prepared by impregnation of potassium sources on commercial cobalt carbonate and on the precursors synthesized by homogeneous precipitation, combustion with glycine, gradual oxidation, and hydrothermal methods. The activities of these catalysts for the direct decomposition of nitrous oxide in the presence of oxygen with or without water vapor were examined. The effects of potassium sources on the catalyst activity were also examined by impregnation of various potassium salts on commercial cobalt carbonate. The catalyst prepared by impregnation of an aqueous solution of KOH on commercial cobalt carbonate showed the highest activity. The catalysts prepared by various methods were analyzed by powder X-ray diffraction, N2 adsorption, scanning electron microscope, temperature-programmed reduction with H2, temperature-programmed desorption of O2, and X-ray photoelectron spectroscopy. These results suggest that crystallite size and reduction property are key factors for the activity of the catalyst for the direct decomposition of nitrous oxide in the presence of oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. IPCC Third Assessment Report – Climate Change 2001: The Scientific Basis, The Intergovernmental Panel on Climate Change, Working Group I. Original report is available at: http://www.grida.no/publications/other/ipcc%5Ftar/?src=/climate/ipcc_tar/wg1/index.htm

  2. Kapteijn F, Rodriguez-Mirasol J, Moulijn JA (1996) Appl Catal B: Environ 9:25

    CAS  Google Scholar 

  3. Centi G, Galli A, Montanari B, Perathoner S, Vaccari A (1997) Catal Today 35:113

    Article  CAS  Google Scholar 

  4. Haber J, Machej T, Janas J, Nattich M (2004) Catal Today 90:15

    Article  CAS  Google Scholar 

  5. Tzitzios VK, Georgakilas V (2005) Chemosphere 59:887

    Article  CAS  Google Scholar 

  6. Haber J, Nattich M, Machej T (2008) Appl Catal B: Environ 77:278

    Article  CAS  Google Scholar 

  7. Drago RS, Jurczyk K, Kob N (1997) Appl Catal B: Environ 13:69

    Article  CAS  Google Scholar 

  8. Satsuma A, Maeshima H, Watanabe K, Suzuki K, Hattori T (2000) Catal Today 63:347

    Article  CAS  Google Scholar 

  9. Scagnelli A, di Valentin C, Pacchioni G (2006) Surf Sci 600:386

    Article  CAS  Google Scholar 

  10. Russo N, Mescia D, Fino D, Saracco G, Specchia V (2007) Ind Eng Chem Res 46:4226

    Article  CAS  Google Scholar 

  11. Pasha N, Lingaiah N, Reddy PSS, Prasad PSS (2009) Catal Lett 127:101

    Article  CAS  Google Scholar 

  12. da Cruz RS, Mascarenhas AJS, Andrade HMC (1998) Appl Catal B: Environ 18:223

    Article  CAS  Google Scholar 

  13. Pérez-Ramírez J, Kapteijn F, Mul G, Moulijn JA (2001) Chem Commun 693

  14. Guesmi H, Berthomieu D, Kiwi-Minsker L (2008) J Phys Chem C 112:20319

    Article  CAS  Google Scholar 

  15. Zakirov V, Sweeting M, Lawtence T, Sellers J (2001) Acta Asteronaut 48:353

    Article  Google Scholar 

  16. Zakirov V, Zhang H-Y (2008) Aerospace Sci Technol 12:318

    Article  CAS  Google Scholar 

  17. Shimizu A, Tanaka K, Fujimori M (2000) Chemosphere Global Change Sci 2:425

    Article  CAS  Google Scholar 

  18. Shimizu A, Miura K, Tagawa K, Kan H (2004) J Chem Eng Jpn 37:808

    Article  CAS  Google Scholar 

  19. Stelmachowski P, Zasada F, Maniak G, Granger P, Inger M, Wilk M, Kotarba A, Sojka Z (2009) Catal Lett 130:637

    Article  CAS  Google Scholar 

  20. Schmid G, Keller N (1950) Naturwiss 37:42

    Article  CAS  Google Scholar 

  21. Amphlett CB (1954) Trans Faraday Soc 50:273

    Article  Google Scholar 

  22. Volpe ML, Reddy JF (1967) J Catal 7:76

    Article  CAS  Google Scholar 

  23. Armor JN, Braymer TA, Farris TS, Li Y, Petrocelli FP, Weist EL, Kannan S, Swamy CS (1996) Appl Catal B: Environ 7:397

    Article  CAS  Google Scholar 

  24. Kannan S, Swamy CS (1999) Catal Today 53:725

    Article  CAS  Google Scholar 

  25. Chellam U, Xu ZP, Zeng HC (2000) Chem Mater 12:650

    Article  CAS  Google Scholar 

  26. Yan L, Ren T, Wang X, Ji D, Suo J (2003) Appl Catal B: Environ 45:85

    Article  CAS  Google Scholar 

  27. Yan L, Ren T, Wang X, Gao Q, Ji D, Suo J (2003) Catal Commun 4:505

    Article  CAS  Google Scholar 

  28. Obalová L, Fíla (2007) Appl Catal B: Environ 70:353

    Article  Google Scholar 

  29. Armor JN, Braymer TA, Li Y, Farris TS (1995) USP 005472677 (Engelhard Co)

  30. Pérez-Ramírez J, Garecía-Cortés JM, Kapteijn F, Illán-Gómez MJ, Ribera A, de Lecea CS-M, Moulijn JA (2000) Appl Catal B: Environ 25:191

    Article  Google Scholar 

  31. Ohnishi C, Asano K, Iwamoto S, Inoue M (2006) Stud Surf Sci Catal 162:737

    Article  CAS  Google Scholar 

  32. Ohnishi C, Asano K, Iwamoto S, Chikama K, Inoue M (2007) Catal Today 120:145

    Article  CAS  Google Scholar 

  33. Asano K, Ohnishi C, Iwamoto S, Shioya Y, Inoue M (2008) Appl Catal B: Environ 78:242

    Article  CAS  Google Scholar 

  34. Xue L, Zhang C, He H, Teraoka Y (2007) Catal Today 126:449

    Article  CAS  Google Scholar 

  35. Pasha N, Lingaiah N, Babu NS, Reddy PSS, Presad PSS (2008) Catal Commun 10:132

    Article  CAS  Google Scholar 

  36. Stelmachowski P, Maniak G, Kotarba A, Sojka Z (2009) Catal Commun 10:1062

    Article  CAS  Google Scholar 

  37. Zasada F, Stelmachowski P, Maniak G, Paul J-F, Kotarba A, Sojaka Z (2009) Catal Lett 127:131

    Article  Google Scholar 

  38. Abu-Zied BM, Soliman SA (2009) Catal Lett 132:299

    Article  CAS  Google Scholar 

  39. Cheng H, Huang Y, Wang A, Li L, Wang X, Zhang T (2009) Appl Catal B: Environ 89:391

    Article  CAS  Google Scholar 

  40. Xue L, He H, Liu C, Zhang C, Zhang B (2009) Environ Sci Technol 43:890

    Article  CAS  Google Scholar 

  41. Obalová L, Karásková K, Jirátová K, Kovanda F (2009) Appl Catal B: Environ 90:132

    Article  Google Scholar 

  42. Park PW, Kil JK, Kung HH, Kung MC (1998) Catal Today 42:51

    Article  CAS  Google Scholar 

  43. Haneda M, Kintaichi Y, Bion N, Hamada H (2003) Appl Catal B: Environ 46:473

    Article  CAS  Google Scholar 

  44. Pengpanich S, Meeyoo V, Rirksomboon T, Bunyakiat K (2002) Appl Catal A: Gen 234:221

    Article  CAS  Google Scholar 

  45. Polizzi S, Bucella S, Speghini A, Vetrone F, Naccache R, Boyer JC, Capobianco JA (2004) Chem Mater 16:1330

    Article  CAS  Google Scholar 

  46. Xu R, Zeng HC (2003) J Phys Chem B 107:926

    Article  CAS  Google Scholar 

  47. Wang Z, Chen X, Zhang M, Qian Y (2005) Solid State Sci 7:13

    Article  CAS  Google Scholar 

  48. Moulder F, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Co, Eden Prairie (USA)

    Google Scholar 

  49. Xu R, Zeng HC (2003) J Phys Chem B 107:12643

    Article  CAS  Google Scholar 

  50. Haneda M, Nakamura I, Fujitani T, Hamada H (2006) Catal Surv Asia 9:207

    Article  Google Scholar 

  51. Avila AG, Barrera EC, Huerta LA, Muhl A (2004) Solar Energ Mater Solar Cell 82:269

    Article  Google Scholar 

  52. Sexton BA, Hughes AE, Turney TW (1986) J Catal 97:390

    Article  CAS  Google Scholar 

  53. Voß M, Borgmann D, Wedler G (2002) J Catal 212:10

    Article  Google Scholar 

  54. Xu X-L, Yang E, Li J-Q, Li Y, Chen W-K (1991) ChemCatChem 1:384

    Article  Google Scholar 

  55. Winter ERS (1969) J Catal 15:144

    Article  CAS  Google Scholar 

  56. Cunningham J, Penny AL (1974) J Phys Chem 78:870

    Article  CAS  Google Scholar 

  57. Henderson MA, Szanyi J, Peden CHF (2003) Catal Today 85:251

    Article  CAS  Google Scholar 

  58. Zhu J, Albertsma S, van Ommen JG, Lefferts L (2005) J Phys Chem B 109:9550

    Article  CAS  Google Scholar 

  59. Chen W-K, Sun B-Z, Wang X, Lu C-H (2008) J Theo Comput Chem 7:263

    Article  Google Scholar 

  60. Dandekar A, Vannice MA (1999) Appl Catal B: Environ 22:179

    Article  CAS  Google Scholar 

  61. Zhu Z, Lu GQ, Zhuang Y, Shen D (1999) Energy Fuels 13:763

    Article  CAS  Google Scholar 

  62. Pinna F, Scarpa M, Strukul G, Guglielminotti E, Boccuzzi F, Manzoli M (2000) J Catal 192:158

    Article  CAS  Google Scholar 

  63. Fanning PE, Vannice MA (2002) J Catal 207:166

    Article  CAS  Google Scholar 

  64. Nobukawa T, Yoshida M, Okumura K, Tomishige K, Kunimori K (2005) J Catal 229:374

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Inoue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshino, H., Ohnishi, C.H., Hosokawa, S. et al. Optimized synthesis method for K/Co3O4 catalyst towards direct decomposition of N2O. J Mater Sci 46, 797–805 (2011). https://doi.org/10.1007/s10853-010-4818-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4818-4

Keywords

Navigation