Skip to main content
Log in

Laplace–Beltrami Operator on Digital Surfaces

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

This article presents a novel discretization of the Laplace–Beltrami operator on digital surfaces. We adapt an existing convolution technique proposed by Belkin et al. (in: Teillaud (ed) Proceedings of the 24th ACM symposium on computational geometry, College Park, MD, USA, pp 278–287, 2008, https://doi.org/10.1145/1377676.1377725) for triangular meshes to topological border of subsets of \(\mathbb {Z}^n\). The core of the method relies on first-order estimation of measures associated with our discrete elements (such as length, area etc.). We show strong consistency (i.e., pointwise convergence) of the operator and compare it against various other discretizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alexa, M., Wardetzky, M.: Discrete Laplacians on general polygonal meshes. In: ACM SIGGRAPH 2011 Papers, SIGGRAPH’11, pp. 102:1–102:10. ACM, New York, NY, USA (2011). https://doi.org/10.1145/1964921.1964997

  2. Belkin, M., Niyogi, P.: Towards a theoretical foundation for Laplacian-based manifold methods. J. Comput. Syst. Sci. 74(8), 1289–1308 (2008). https://doi.org/10.1016/j.jcss.2007.08.006

    Article  MathSciNet  MATH  Google Scholar 

  3. Belkin, M., Sun, J., Wang, Y.: Constructing Laplace Operator from Point Clouds in \({\mathbb{R}}^d\), pp. 1031–1040. https://doi.org/10.1137/1.9781611973068.112

  4. Belkin, M., Sun, J., Wang, Y.: Discrete Laplace operator on meshed surfaces. In: Teillaud, M. (ed.) Proceedings of the 24th ACM Symposium on Computational Geometry, College Park, MD, USA, June 9–11, 2008, pp. 278–287. ACM (2008). https://doi.org/10.1145/1377676.1377725

  5. Caissard, T., Coeurjolly, D., Lachaud, J.O., Roussillon, T.: Heat kernel Laplace–Beltrami operator on digital surfaces. Working paper or preprint (2016)

  6. Carl, W.: A Laplace operator on semi-discrete surfaces. Found. Comput. Math. 16(5), 1115–1150 (2016). https://doi.org/10.1007/s10208-015-9271-y

    Article  MathSciNet  MATH  Google Scholar 

  7. Cartade, C., Mercat, C., Malgouyres, R., Samir, C.: Mesh parameterization with generalized discrete conformal maps. J. Math. Imaging Vis. 46(1), 1–11 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cazals, F., Pouget, M.: Estimating differential quantities using polynomial fitting of osculating jets. Comput. Aided Geom. Des. 22(2), 121–146 (2005). https://doi.org/10.1016/j.cagd.2004.09.004

    Article  MathSciNet  MATH  Google Scholar 

  9. Coeurjolly, D., Lachaud, J., Levallois, J.: Integral based curvature estimators in digital geometry. In: González-Díaz, R., Jiménez, M.J., Medrano, B. (eds.) Discrete Geometry for Computer Imagery—17th IAPR International Conference, DGCI 2013, Seville, Spain, March 20–22, 2013. Proceedings, Lecture Notes in Computer Science, vol. 7749, pp. 215–227. Springer (2013). https://doi.org/10.1007/978-3-642-37067-0_19

  10. Coeurjolly, D., Lachaud, J., Levallois, J.: Multigrid convergent principal curvature estimators in digital geometry. Comput. Vis. Image Underst. 129, 27–41 (2014). https://doi.org/10.1016/j.cviu.2014.04.013

    Article  MATH  Google Scholar 

  11. Coeurjolly, D., Lachaud, J.O., Roussillon, T.: Multigrid Convergence of Discrete Geometric Estimators, pp. 395–424. Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-007-4174-4_13

  12. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the lambertw function. Adv. Comput. Math. 5(1), 329–359 (1996). https://doi.org/10.1007/BF02124750

    Article  MathSciNet  MATH  Google Scholar 

  13. Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in heat: a new approach to computing distance based on heat flow. ACM TOG 32(5), 152 (2013)

    Article  Google Scholar 

  14. Cuel, L., Lachaud, J.O., Thibert, B.: Voronoi-based geometry estimator for 3d digital surfaces. In: Proceedings of Discrete Geometry for Computer Imagery (DGCI’2014), LNCS, vol. 8668, pp. 134–149 (2014)

  15. DGtal: Digital geometry tools and algorithms library. http://dgtal.org

  16. Desbrun, M., Hirani, A.N., Leok, M., Marsden, J.E.: Discrete exterior calculus. arXiv preprint arXiv: math/0508341 (2005)

  17. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Waggenspack, W.N. (ed.) Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1999, Los Angeles, CA, USA, August 8–13, 1999, pp. 317–324. ACM (1999). https://doi.org/10.1145/311535.311576

  18. Dey, T.K., Ranjan, P., Wang, Y.: Convergence, Stability, and Discrete Approximation of Laplace Spectra, pp. 650–663. https://doi.org/10.1137/1.9781611973075.54

  19. Dziuk, G.: Finite Elements for the Beltrami Operator on Arbitrary Surfaces, pp. 142–155. Springer, Berlin (1988). https://doi.org/10.1007/BFb0082865

  20. de Vieilleville, F., Lachaud, J., Feschet, F.: Convex digital polygons, maximal digital straight segments and convergence of discrete geometric estimators. J. Math. Imaging Vis. 27(2), 139–156 (2007). https://doi.org/10.1007/s10851-007-0779-x

    Article  MathSciNet  Google Scholar 

  21. Ellis, T., Proffitt, D., Rosen, D., Rutkowski, W.: Measurement of the lengths of digitized curved lines. Comput. Graph. Image Process. 10(4), 333–347 (1979). https://doi.org/10.1016/S0146-664X(79)80042-8

    Article  Google Scholar 

  22. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93(3), 418–491 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  23. Flin, F., Brzoska, J.B., Lesaffre, B., Coléou, C., Lamboley, P., Coeurjolly, D., Teytaud, O., Vignoles, G., Delesse, J.F.: An adaptive filtering method to evaluate normal vectors and surface areas of 3d objects. Application to snow images from X-ray tomography. IEEE Trans. Image Process. 14(5), 585–596 (2005)

    Article  MathSciNet  Google Scholar 

  24. Fujiwara, K.: Eigenvalues of Laplacians on a closed Riemannian manifold and its nets. Proc. Am. Math. Soc. 123(8), 2585–2594 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Grady, L.J., Polimeni, J.: Discrete Calculus: Applied Analysis on Graphs for Computational Science. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  26. Harrison, J.: Stokes’ theorem for nonsmooth chains. Bull. Am. Math. Soc. 29(2), 235–242 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Harrison, J.: Flux across nonsmooth boundaries and fractal Gauss/Green/Stokes’ theorems. J. Phys. A Math. Gen. 32(28), 5317 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hein, M., Audibert, J.Y., von Luxburg, U.: From Graphs to Manifolds—Weak and Strong Pointwise Consistency of Graph Laplacians, pp. 470–485. Springer, Berlin (2005). https://doi.org/10.1007/11503415_32

  29. Herman, G.: Geometry of Digital Spaces. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2012)

    Google Scholar 

  30. Hildebrand, T., Laib, A., Müller, R., Dequeker, J., Rüegsegger, P.: Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J. Bone Miner. Res. 14(7), 1167–74 (1999)

    Article  Google Scholar 

  31. Hildebrandt, K., Polthier, K.: Generalized shape operators on polyhedral surfaces. Comput. Aided Geom. Des. 28(5), 321–343 (2011). https://doi.org/10.1016/j.cagd.2011.05.001

    Article  MathSciNet  MATH  Google Scholar 

  32. Hildebrandt, K., Polthier, K.: On approximation of the Laplace–Beltrami operator and the Willmore energy of surfaces. Comput. Graph. Forum 30(5), 1513–1520 (2011). https://doi.org/10.1111/j.1467-8659.2011.02025.x

    Article  Google Scholar 

  33. Hildebrandt, K., Polthier, K., Wardetzky, M.: On the convergence of metric and geometric properties of polyhedral surfaces. Geom. Dedic. 123(1), 89–112 (2006). https://doi.org/10.1007/s10711-006-9109-5

    Article  MathSciNet  MATH  Google Scholar 

  34. Hirani, A.N.: Discrete exterior calculus. Ph.D. thesis, California Institute of Technology (2003)

  35. Hunter, J., Nachtergaele, B.: Applied Analysis. World Scientific, Singapore (2001)

    Book  MATH  Google Scholar 

  36. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  37. Lachaud, J., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent estimation on digital contours. Image Vis. Comput. 25(10), 1572–1587 (2007). https://doi.org/10.1016/j.imavis.2006.06.019

    Article  Google Scholar 

  38. Lachaud, J.O.: Non-Euclidean spaces and image analysis : Riemannian and discrete deformable models, discrete topology and geometry. Habilitation à diriger des recherches, Université Sciences et Technologies - Bordeaux I (2006)

  39. Lachaud, J.O., Thibert, B.: Properties of Gauss digitized shapes and digital surface integration. J. Math. Imaging Vis. 54(2), 162–180 (2016). https://doi.org/10.1007/s10851-015-0595-7

    Article  MathSciNet  MATH  Google Scholar 

  40. Lenoir, A.: Des outils pour les surfaces discrètes : estimation d’invariants géométriques, préservation de la topologie, tracé de géodésiques et visualisation. Ph.D. thesis, Université de Caen (1999)

  41. Lenoir, A., Malgouyres, R., Revenu, M.: Fast computation of the normal vector field of the surface of a 3-D discrete object, pp. 101–112. Springer, Berlin (1996). https://doi.org/10.1007/3-540-62005-2_9

  42. Levallois, J., Coeurjolly, D., Lachaud, J.: Parameter-free and multigrid convergent digital curvature estimators. In: Proceedings of Discrete Geometry for Computer Imagery—18th IAPR International Conference, DGCI 2014, Siena, Italy, September 10–12, 2014, pp. 162–175 (2014)

  43. Lévy, B., Zhang, H.: Spectral Mesh Processing. Technical report, SIGGRAPH Asia 2009 courses (2008)

  44. Mayer, U.: Numerical solutions for the surface diffusion flow in three space dimensions 20 (2001). https://www.math.utah.edu/~mayer/math/Mayer07.pdf

  45. Mercat, C.: Discrete Riemann surfaces and the Ising model. Commun. Math. Phys. 218(1), 177–216 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mercat, C.: Discrete complex structure on surfel surfaces. In: Discrete Geometry for Computer Imagery, Lecture Notes in Computer Science, vol. 4992, pp. 153–164. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-79126-3_15

  47. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete Differential-Geometry Operators for Triangulated 2-Manifolds, pp. 35–57. Springer, Berlin (2003). https://doi.org/10.1007/978-3-662-05105-4_2

  48. Molchanov, S.A.: Diffusion processes and Riemannian geometry. Russ. Math. Surv. 30(1), 1 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ovsjanikov, M., Corman, E., Bronstein, M., Rodolà, E., Ben-Chen, M., Guibas, L., Chazal, F., Bronstein, A.: Computing and processing correspondences with functional maps. In: ACM SIGGRAPH 2017 Courses, SIGGRAPH’17, pp. 5:1–5:62. ACM, New York, NY, USA (2017). https://doi.org/10.1145/3084873.3084877

  50. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  51. Polthier, K.: Computational aspects of discrete minimal surfaces (2002). https://pdfs.semanticscholar.org/b069/e756fc5d296f72aa15406ff63dda302c1dc3.pdf

  52. Polthier, K., Preuss, E.: Identifying vector field singularities using a discrete Hodge decomposition. Vis. Math. 3, 113–134 (2003)

    MathSciNet  MATH  Google Scholar 

  53. Pottmann, H., Wallner, J., Huang, Q., Yang, Y.: Integral invariants for robust geometry processing. Comput. Aided Geom. Des. 26(1), 37–60 (2009). https://doi.org/10.1016/j.cagd.2008.01.002

    Article  MathSciNet  MATH  Google Scholar 

  54. Pottmann, H., Wallner, J., Yang, Y., Lai, Y., Hu, S.: Principal curvatures from the integral invariant viewpoint. Comput. Aided Geom. Des. 24(8–9), 428–442 (2007). https://doi.org/10.1016/j.cagd.2007.07.004

    Article  MathSciNet  MATH  Google Scholar 

  55. Qin, H., Chen, Y., Wang, Y., Hong, X., Yin, K., Huang, H.: Laplace–Beltrami operator on point clouds based on anisotropic Voronoi diagram. Computer Graphics Forum. https://doi.org/10.1111/cgf.13315

  56. Regge, T.: General relativity without coordinates. Il Nuovo Cimento Series 10 19(3), 558–571 (1961). https://doi.org/10.1007/BF02733251

  57. Rosenberg, S.: The Laplacian on a Riemannian Manifold. Cambridge University Press (1997). Cambridge Books Online

  58. Rudin, W.: Principles of Mathematical Analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1976)

    Google Scholar 

  59. Taubin, G.: A signal processing approach to fair surface design. In: Proceedings of SIGGRAPH, pp. 351–358 (1995). https://doi.org/10.1145/218380.218473

  60. Taubin, G.: Geometric signal processing on polygonal meshes 4 (2001). http://mesh.brown.edu/DGP/pdfs/Taubin-star-eg00.pdf

  61. Vallet, B., Lévy, B.: Spectral geometry processing with manifold harmonics. Comput. Graph. Forum 27(2), 251–260 (2008). https://doi.org/10.1111/j.1467-8659.2008.01122.x

    Article  Google Scholar 

  62. Varadhan, S.: On the behavior of the fundamental solution of the heat equation with variable coefficients. Commun. Pure Appl. Math. 20(2), 431–455 (1967). https://doi.org/10.1002/cpa.3160200210

    Article  MathSciNet  MATH  Google Scholar 

  63. Wardetzky, M.: Discrete differential operators on polyhedral surfaces—convergence and approximation. Ph.D. thesis, Freie Universität Berlin (2010)

  64. Wardetzky, M., Mathur, S., Kaelberer, F., Grinspun, E.: Discrete Laplace operators: no free lunch. Eurographics Symposium on Geometry Processing, pp. 33–37 (2007). https://doi.org/10.2312/SGP/SGP07/033-037

  65. Willmore, T.: Riemannian Geometry. Oxford Science Publications, Clarendon Press (1996)

  66. Xu, G.: Convergence of discrete Laplace–Beltrami operators over surfaces. Comput. Math. Appl. 48(3), 347–360 (2004). https://doi.org/10.1016/j.camwa.2004.05.001

    Article  MathSciNet  MATH  Google Scholar 

  67. Xu, G.: Discrete Laplace–Beltrami operators and their convergence. Comput. Aided Geom. Des. 21(8), 767–784 (2004). https://doi.org/10.1016/j.cagd.2004.07.007. Geometric Modeling and Processing 2004

  68. Xu, G.: Convergence analysis of a discretization scheme for Gaussian curvature over triangular surfaces. Comput. Aided Geom. Des. 23(2), 193–207 (2006). https://doi.org/10.1016/j.cagd.2005.07.002

    Article  MathSciNet  MATH  Google Scholar 

  69. Zhang, H.: Discrete combinatorial Laplacian operators for digital geometry processing. In: in SIAM Conference on Geometric Design, 2004, pp. 575–592. Press (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Caissard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been partly funded by CoMeDiC ANR-15-CE40-0006 research grant. We would like to thank the anonymous reviewers for their detailed comments and suggestions for the manuscript.

Appendices

Appendices

Lemma 4

Let \(a,b,c\in \mathbb {R}\), if \(a \le 0\) and \(c \ge 0\), then

$$\begin{aligned} a \le b \le c \implies |b| \le \max \{|a|,c\}\,. \end{aligned}$$

Proof

We split the proof into two cases depending on the sign of b. If \(b \le 0\), then \(|b| \le |a|\) and therefore \(|b| \le \max \{|a|,c\}\). If \(b > 0\), then \(|b| = b \le |c| = c\) as \(c \ge 0\) and therefore \(|b| \le \max \{|a|,c\}\) which concludes the proof. \(\square \)

Lemma 5

Let \(x\in \mathbb {R}\),

$$\begin{aligned}&e^{\frac{x}{2}} -1 \le x \iff 0 \le x \\&\quad \le -\frac{1}{2}\left[ 2\, W_{-1}\left( - \frac{1}{2 \sqrt{e}} \right) + 1 \right] \approx 2.51286 \end{aligned}$$

where \(W_{-1}\) is the lower branch of Lambert W-function (also called omega function or product logarithms).

Fig. 12
figure 12

Plot of the two principal branches of the Lambert W-function. \(W_0\) is in orange, and \(W_{-1}\) in green. The two branches join at the point \((-1/e,-1)\) (Color figure online)

Proof

We use the Lambert W-function to prove this lemma. In-depth study of this object can be found in the book of Corless, Gonnet, Hare and Knuth [12]. The function is defined as the multivalued function W that satisfies

$$\begin{aligned} z = W(z)e^{W(z)} \end{aligned}$$

for \(z\in \mathbb {C}\). It is equivalently the inverse function of \(f(w) = we^w\). The graph of the Lambert W-function in the real numbers is drawn in Fig. 12. The function has two real branches \(W_0\) and \(W_{-1}\) in the interval \(-1/e< x < 0\) which join at \(x=-1/e\). This means that the equation \(x = we^w\) has two solutions in this interval (one per branch). We will use both branches: \(W_{-1}\) which is decreasing in its interval, and \(W_0\) which is increasing in this interval. We also use the identity \(W(x e^x) = x\). We do a proof by equivalence of inequalities:

$$\begin{aligned}&e^{\frac{x}{2}} - 1 \le x \\&\quad \iff e^{\frac{x}{2}} \le x + 1 \\&\quad \iff -(x+1) e^{-\frac{x}{2}} \le -1 \\&\quad \iff -\left( \frac{x}{2} + \frac{1}{2} \right) e^{- \left( \frac{x}{2} + \frac{1}{2}\right) } \\&\qquad \le - \frac{1}{2 \sqrt{e}}. \,\,\hbox { by multiplying by } \frac{1}{2\sqrt{e}} \end{aligned}$$

Putting \(X = - \frac{1}{2}(x + 1)\) we have

$$\begin{aligned} X \ge W_{-1}\left( - \frac{1}{2 \sqrt{e}}\right) \text { and } X \le W_{0}\left( - \frac{1}{2 \sqrt{e}}\right) \end{aligned}$$

which leads to

$$\begin{aligned}&- \left( 2 W_{0}\left( - \frac{1}{2\sqrt{e}}\right) + 1 \right) = 0 \le x \\&\quad \le - \left( 2 W_{-1}\left( - \frac{1}{2\sqrt{e}}\right) + 1 \right) \approx 2.51286 \end{aligned}$$

as \(W_{0}( - \frac{1}{2\sqrt{e}}) = \frac{1}{2}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caissard, T., Coeurjolly, D., Lachaud, JO. et al. Laplace–Beltrami Operator on Digital Surfaces. J Math Imaging Vis 61, 359–379 (2019). https://doi.org/10.1007/s10851-018-0839-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-018-0839-4

Keywords

Navigation