Skip to main content
Log in

Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We consider a variational convex relaxation of a class of optimal partitioning and multiclass labeling problems, which has recently proven quite successful and can be seen as a continuous analogue of Linear Programming (LP) relaxation methods for finite-dimensional problems. While for the latter several optimality bounds are known, to our knowledge no such bounds exist in the infinite-dimensional setting. We provide such a bound by analyzing a probabilistic rounding method, showing that it is possible to obtain an integral solution of the original partitioning problem from a solution of the relaxed problem with an a priori upper bound on the objective. The approach has a natural interpretation as an approximate, multiclass variant of the celebrated coarea formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Algorithm 1

Similar content being viewed by others

References

  1. Alberti, G.: The calibration method for the Mumford-Shah functional and free-discontinuity problems. Calc. Var. Partial Differ. Equ. 16(3), 299–333 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Clarendon, Oxford (2000)

    MATH  Google Scholar 

  3. Bae, E., Yuan, J., Tai, X.C.: Global minimization for continuous multiphase partitioning problems using a dual approach. Int. J. Comput. Vis. 92, 112–129 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  5. Chambolle, A., Cremers, D., Pock, T.: A convex approach for computing minimal partitions. Tech. Rep. 649, Ecole Polytechnique CMAP (2008)

  6. Chambolle, A., Darbon, J.: On total variation minimization and surface evolution using parametric maximum flows. Int. J. Comput. Vis. 84, 288–307 (2009)

    Article  Google Scholar 

  7. Chan, T.F., Esedoḡlu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. J. Appl. Math. 66(5), 1632–1648 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Darbon, J., Sigelle, M.: Image restoration with discrete constrained total variation part I: fast and exact optimization. J. Math. Imaging Vis. 26(3), 261–276 (2006)

    Article  MathSciNet  Google Scholar 

  9. Darbon, J., Sigelle, M.: Image restoration with discrete constrained total variation part II: levelable functions, convex priors and non-convex cases. J. Math. Imaging Vis. 26(3), 277–291 (2006)

    Article  MathSciNet  Google Scholar 

  10. Delaunoy, A., Fundana, K., Prados, E., Heyden, A.: Convex multi-region segmentation on manifolds. In: Int. Conf. Comp. Vis (2009)

    Google Scholar 

  11. Goldstein, T., Bresson, X., Osher, S.: Global minimization of Markov random field with applications to optical flow. CAM Report 09-77, UCLA (2009)

  12. Kleinberg, J.M., Tardos, E.: Approximation algorithms for classification problems with pairwise relationships: metric labeling and Markov random fields. In: Found. Comp. Sci., pp. 14–23 (1999)

    Google Scholar 

  13. Klodt, M., Schoenemann, T., Kolev, K., Schikora, M., Cremers, D.: An experimental comparison of discrete and continuous shape optimization methods. In: Europ. Conf. Comp. Vis, Marseille, France (2008)

    Google Scholar 

  14. Kolev, K., Klodt, M., Brox, T., Cremers, D.: Continuous global optimization in multiview 3d reconstruction. Int. J. Comput. Vis. 84(1) (2009). doi:10.1007/s11263-009-0233-1

  15. Komodakis, N., Tziritas, G.: Approximate labeling via graph cuts based on linear programming. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1436–1453 (2007)

    Article  Google Scholar 

  16. Lellmann, J., Becker, F., Schnörr, C.: Convex optimization for multi-class image labeling with a novel family of total variation based regularizers. In: Int. Conf. Comp. Vis (2009)

    Google Scholar 

  17. Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class image labeling by simplex-constrained total variation. In: Scale Space and Var. Meth. LNCS, vol. 5567, pp. 150–162 (2009)

    Google Scholar 

  18. Lellmann, J., Lenzen, F., Schnörr, C.: Optimality bounds for a variational relaxation of the image partitioning problem. In: Energy Min. Meth. Comp. Vis. Patt. Recogn. (2011)

    Google Scholar 

  19. Lellmann, J., Schnörr, C.: Continuous multiclass labeling approaches and algorithms. SIAM J. Imaging Sci. (2011). doi:10.1137/100805844

  20. Lysaker, M., Tai, X.C.: Iterative image restoration combining total variation minimization and a second-order functional. Int. J. Comput. Vis. 66(1), 5–18 (2006)

    Article  Google Scholar 

  21. Olsson, C.: Global optimization in computer vision: convexity, cuts and approximation algorithms. Ph.D. Thesis, Lund Univ. (2009)

  22. Olsson, C., Byröd, M., Overgaard, N.C., Kahl, F.: Extending continuous cuts: anisotropic metrics and expansion moves. In: Int. Conf. Comp. Vis (2009)

    Google Scholar 

  23. Paragios, N., Chen, Y., Faugeras, O. (eds.): The Handbook of Mathematical Models in Computer Vision. Springer, Berlin (2006)

    Google Scholar 

  24. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: Global solutions of variational models with convex regularization. J. Imaging Sci. 3(4), 1122–1145 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, 2nd edn. Springer, Berlin (2004)

    Google Scholar 

  26. Strandmark, P., Kahl, F., Overgaard, N.C.: Optimizing parametric total variation models. In: Int. Conf. Comp. Vis. (2009)

    Google Scholar 

  27. Trobin, W., Pock, T., Cremers, D., Bischof, H.: Continuous energy minimization by repeated binary fusion. In: Europ. Conf. Comp. Vis., vol. 4, pp. 667–690 (2008)

    Google Scholar 

  28. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2010)

    Google Scholar 

  29. Yuan, J., Bae, E., Tai, X.C., Boykov, Y.: A continuous max-flow approach to Potts model. In: Europ. Conf. Comp. Vis, pp. 379–392 (2010)

    Google Scholar 

  30. Zach, C., Gallup, D., Frahm, J.M., Niethammer, M.: Fast global labeling for real-time stereo using multiple plane sweeps. In: Vis. Mod. Vis. (2008)

    Google Scholar 

Download references

Acknowledgements

This publication is partly based on work supported by Award No. KUK-I1-007-43, made by King Abdullah University of Science and Technology (KAUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Lellmann.

Appendix

Appendix

Proof of Proposition 3

In order to prove the first assertion (88), note that the mapping wΨ(νw ) is convex, therefore it must assume its maximum on the polytope Δ l −Δ l :={z 1z 2|z 1,z 2∈Δ l } in a vertex of the polytope. Since the polytope Δ l −Δ l is the difference of two polytopes, its vertex set is at most the difference of their vertex sets, V:={e ie j|i,j∈{1,…,l}}. On this set, the bound Ψ(νw )⩽λ u holds for wV due to the upper-boundedness condition (25), which proves (88).

The second equality (90) follows from the fact that G:={b ik:=e k(e ie i+1)∣1⩽kd,1⩽il−1} is a basis of the linear subspace W, satisfying Ψ(b ik)⩽λ u , and Ψ is positively homogeneous and convex, and thus subadditive. Specifically, there is a linear transform T:W→ℝd×(l−1) such that w=∑ i,k b ik α ik for α=T(w). Then

(172)
(173)
(174)

Since (25) ensures Ψb ik)⩽λ u , we obtain

$$ \varPsi(w) \leqslant\lambda_u \sum_{i k} | \alpha_{i k} | \leqslant \lambda_u \|T\| \|w \|_2 $$
(175)

for any suitable operator norm ∥⋅∥ and any wW. □

Proof of Proposition 4

Denote \(\mathcal{B}_{\delta} :=\mathcal{B}_{\delta}(x)\). We prove mutual inclusion:

“⊆”: From the definition of the measure-theoretic interior,

(176)

Since \(|\mathcal{B}_{\delta} | \geqslant|\mathcal{B}_{\delta} \cap E| \geqslant|\mathcal{B}_{\delta} \cap E \cap F|\) (and vice versa for \(|\mathcal{B}_{\delta} \cap F|\)), it follows by the “sandwich” criterion that both \(\lim_{\delta\searrow0} |\mathcal{B}_{\delta} \cap E| / |\mathcal{B}_{\delta} |\) and \(\lim_{\delta\searrow0} |\mathcal{B}_{\delta} \cap F| / |\mathcal{B}_{\delta} |\) exist and are equal to 1, which shows xE 1F 1.

“⊇”: Assume that xE 1F 1. Then

(177)
(178)
(179)

We obtain equality,

(180)
(181)
(182)

from which we conclude that

$$ \lim_{\delta\searrow0} \sup\frac{|\mathcal{B}_{\delta} \cap E \cap F|}{|\mathcal{B}_{\delta} |} = \lim_{\delta\searrow0} \inf \frac{|\mathcal{B}_{\delta} \cap E \cap F|}{|\mathcal{B}_{\delta} |} = 1, $$

i.e., x∈(EF)1. □

Proof of Proposition 5

First note that

(183)
(184)
(185)
(186)
(187)

The inequality (∗) is a consequence of the definition of \(w^{\pm}_{\mathcal{F}E}\) and [2, Theorem 3.77], and (∗∗) follows directly from w(x),w(y)∈Δ l a.e. on Ω. The upper bound (187) permits applying [2, Theorem 3.84] on w, which provides \(w \in\operatorname{BV} (\varOmega)^{l}\) and (94). Due to [2, Proposition 3.61], the sets (E)0,(E)1 and \(\mathcal{F}E\) form a (pairwise disjoint) partition of Ω, up to an \(\mathcal{H}^{d - 1}\)-zero set. Therefore, since \(\varPsi(D u) \ll|D u| \ll\mathcal{H}^{d - 1}\) by construction, from [2, Theorem 2.37, 3.84] we obtain, for any Borel set A,

(188)
(189)

Since w(x)∈Δ l a.e. by assumption, we conclude that \(w^{+}_{\mathcal{F}E}\) and \(w^{-}_{\mathcal{F}E}\) must have values in Δ l as well, see [2, Theorem 3.77]. Therefore we can apply Proposition 3 to obtain

(190)
(191)
(192)

We rewrite Ψ(Dw) using (94),

(193)

From [2, Proposition 2.37] we obtain that Ψ is additive on mutually singular Radon measures μ,ν, i.e., if |μ|⊥|ν|, then

(194)

for any Borel set BΩ. This holds in particular for the three measures in (193), therefore

(195)

Since Du⌞(E)1≪|Du⌞(E)1|=|Du|⌞(E)1, we conclude Ψ(Dw)⌞(E)1=Ψ(Du)⌞(E)1 and Ψ(Dw)⌞(E)0=Ψ(Dv)⌞(E)0. Substitution into (192) proves the remaining assertion,

(196)

 □

Proof of Proposition 6

We first show (98). It suffices to show that

(197)

This can be seen by considering the precise representative \(\widetilde{1_{E}}\) of 1 E [2, Definition 3.63]: Starting with the definition,

(198)

the fact that \(\lim_{\delta\searrow0} \frac{| \varOmega\cap\mathcal {B}_{\delta} (x) |}{|\mathcal{B}_{\delta} (x) |} = 1\) implies

(199)
(200)
(201)

Substituting E by ΩE, the same equivalence shows that \(x \in(E)^{0} \Leftrightarrow\widetilde{1_{\varOmega\setminus E}} (x) = 1 \Leftrightarrow\widetilde{1_{E}} (x) = 0\). As \(\mathcal{L}^{d} (\varOmega \setminus((E)^{0} \cup(E)^{1})) = 0\), this shows that \(1_{E^{1}} = \widetilde{1_{E}}\) \(\mathcal{L}^{d}\)-a.e. Using the fact that \(\widetilde {1_{E}} = 1_{E}\) [2, Proposition 3.64], we conclude that \(1_{(E)^{1}} = 1_{E}\) \(\mathcal{L}^{d}\)-a.e., which proves (197) and therefore the assertion (98).

Since the measure-theoretic interior (E)1 is defined over \(\mathcal{L}^{d}\)-integrals, it is invariant under \(\mathcal{L}^{d}\)-negligible modifications of E. Together with (197) this implies

(202)

To show the relation (Du)⌞(E)1=(Dv)⌞(E)1, consider

(203)
(204)

The equality (∗) holds due to the assumption (96), and due to the fact that Df=Dg if f=g \(\mathcal{L}^{d}\)-a.e. (see, e.g., [2, Proposition 3.2]). We continue from (204) via

(205)
(206)
(207)
(208)
(209)

Therefore Du⌞(E)1=Dv⌞(E)1. Then,

(210)
(211)

In the equality (∗) we used the additivity of Ψ on mutually singular Radon measures [2, Proposition 2.37]. By definition of the total variation, |μA|=|μ|⌞A holds for any measure μ, therefore |Du⌞(Ω∖(E)1)|=|Du|⌞(Ω∖(E)1) and |Du⌞(Ω∖(E)1)|((E)1)=0, which together with (again by definition) Ψ(μ)≪|μ| implies that the second term in (211) vanishes. Since all observations equally hold for v instead of u, we conclude

(212)
(213)
(214)

Equation (97) follows immediately. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lellmann, J., Lenzen, F. & Schnörr, C. Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem. J Math Imaging Vis 47, 239–257 (2013). https://doi.org/10.1007/s10851-012-0390-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0390-7

Keywords

Navigation