Skip to main content
Log in

Linguistic\(\leftrightarrow \)Rational Agents’ Semantics

  • Published:
Journal of Logic, Language and Information Aims and scope Submit manuscript

Abstract

We define and prove a formal semantics divided into two complementary interacting components: the strictly linguistic (i.e. linguistically marked) semantics, we call linguistic agent (LA), and the strictly logical and referential semantics, we call rational agent (RA). This Linguistic \(\leftrightarrow \) Rational Agents’ Semantics (LRA semantics) applies to Deep Dependency trees (DD-trees) or more generally, to discourses, i.e. sequences of DD-trees, and interprets them by functional structures we call Meaning Representation Structures (MRS), similar to the DRT, but interpreted very differently. LRA semantics incrementally interprets the discourses by minimal finite models, called proto-models, in a monotonic logic of the LA and checks the proto-models with respect to the classical models of the RA. The proto-model is considered as the linguistic sense of the discourse. We define in full detail the LA which, as we believe, must be universal. On the other hand, we don’t propose a particular RA. We only define the scheme of interaction between the two agents and the stimuli of the RA used by the LA. After all, every discourse has in LRA semantics the single meaning and the single sense for every Rational Agent used to interact with the Linguistic Agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. We simplify a derivation in Morrill (1994) skipping the details of intensionalization non-essential for the point at issue.

  2. This means that the same set of rules is shared by all grammars in a class [cf. AB-grammars (Bar-Hillel et al. 1960) and Lambek grammars (Lambek 1958, 1961)].

  3. It is hard to cite this immense literature, see Hepple (1990), Morrill (1994), Steedman (1996), and Moortgat (1997) for references.

  4. Surface dependencies: \(pre-attr\) (pre-position attributive), pred (predicative: between the main verb and its subject), circ (circumstantial), modif (modifier), \(prepos-instr\) (instrumental prepositional).

  5. I.e. D is generated by \(G_U\).

  6. A more elaborated variant enabling inheritance of attributes is outlined in Dikovsky (2009, 2010).

  7. Mind you that in this case the atom A is ground.

  8. \({\mathcal {D}}\) and \(\mathbf{sent}\) may be dropped when clear.

  9. So in fact no matter which concrete lexemes are used. For instance, the deep lexemes shown in the examples below are English.

  10. Property and attribute dependencies correspond to two kinds of surface modifier dependencies: one whose subordinate modifier (e.g. a quality adjective) may have a magnitude (strength, degree, intensity, etc.) of quality, and the other whose subordinate modifier (e.g. a noun or an attributive adjective) cannot have a magnitude. Not to confuse with the lexical function magn (Mel’čuk 1981, 1996).

  11. In fact, they are interpreted by Skolem functions.

  12. Here we don’t make precise the values \(v_i\) of the features \(f_i\). They may be particular constants or object identities available through variables (see below).

  13. Here and below see Remark 3.

  14. Such kind of finiteness restrictions should guarantee that \(G_U\) is finite.

  15. In the examples below we abbreviate them as \({\textsc {A/T}}\), \({\textsc {M}}\), \({\textsc {DTH}}\) (e.g. \({\textsc {A/T}}(x) ={\textsc {DURAT/PRES}}\), \({\textsc {M}}(x) = {\textsc {IND}}\), \({\textsc {DTH}}(x) = {\textsc {PASS}}\)).

  16. If verbal lexical functions such as \(\mathbf {Oper}_{\mathbf{i}},\ \mathbf {Func}_{\mathbf{i}}\), etc. are included in the set \({\mathcal {L}}\) of D-lexemes, as it is the case of Mel’čuk (1994, 1997, 2003), then they are also included in this class.

  17. We abstract from immaterial details in (4.1) and do not include into the lists their identities oi(i).

  18. By the way, this makes the recursion problematic because lra may cycle infinitely if there are no restrictions on the RA (see below).

  19. The only effect of this reaction is that the current atom is consumed.

  20. We don’t show the other two cases differing only by the actant number.

  21. In this expression \(\bullet \) is the concatenation of a list and a set of lists, one per pair \(\left( (j\in i_1), \left( f^{(i)}_R(i_0,j)\in i_2\right) \right) \in RA-stimulus\), each list consisting of three clauses: \(\left( f^{(i)}_R(i_0,j) \in i_2\right) \), \(\left( f^{(i)}_R(i_0,j)\in lex(i_2)\right) \) and \(\left( (P(gov(i))(i_0,j,f^{(i)}_R(i_0,j))\in gov(i)\right) \leftarrow \left( P(gov(i))(i,i_1,i_2)\in gov(i)) \right) \).

  22. Lexicographic path order(Kamin and Lévy 1980; Dershowitz and Jouannaud 1990; Baader and Nipkow 1998) Let < be a PO on the signature \(\varSigma \). Then the following PO \(<_{lpo}\) on term algebra \(\mathcal {T}_{\varSigma }[X]\) is LPO :

    $$\begin{aligned} \left\{ \begin{array}{l} (l1)~~s>_{lpo} x,~~ x \in Var,~x \not \equiv s~(so~s \not \in Var)\\ (l2)~~f(s_1,\ldots ,s_m)>_{lpo} g(t_1,\ldots ,t_n),~~~\mathbf{if }\\ \qquad (l2a)~~ s_i \ge _{lpo} g(t_1,\ldots ,t_n)~~~\mathbf{for some }~i,~~ 1 \le i \le m,\\ \qquad \mathbf{or }\\ \qquad (l2b)~~f> g~~in~~\varSigma ~~\mathbf{and }~~f(s_1,\ldots ,s_m)>_{lpo} t_j ~~~\mathbf{for~all }~j,~~1 \le j \le n,\\ \qquad \mathbf{or }\\ \qquad (l2c)~~f \equiv g ~~\mathbf{and }~~f(s_1,\ldots ,s_m)>_{lpo} t_j ~~~\mathbf{for~all }~j,~~~1 \le j \le n,~~~\mathbf{and }\\ \quad \qquad s_1 \equiv t_1,\ldots ,s_{k-1} \equiv t_{k-1}~~ \mathbf{and }~~ s_k >_{lpo} t_k ~\mathbf{for~some }~k, ~k \ge 1.\\ \end{array} \right. \end{aligned}$$
  23. For instance, in Dikovsky (2009, 2010) is used a more complex interaction scheme based on signals exchange.

  24. Notice that \(\varSigma \) and \(T_P(\varSigma )\) have the same signature.

References

  • Baader, F., & Nipkow, T. (1998). Term rewriting and all that. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Bar-Hillel, Y., Gaifman, H., & Shamir, E. (1960). On categorial and phrase structure grammars. Bulletin of Research Council of Israel, 9F, 1–16.

    Google Scholar 

  • Barss, A., & Lasnik, H. (1986). A note on anaphora and double objects. Linguistic Inquiry, 17, 347–354.

    Google Scholar 

  • Birkhoff, G. (1967). Lattice theory. Providence, RI: American Mathematical Soc.

    Google Scholar 

  • Bos, J. (1995). Predicate logic unplugged. In P. Dekker & M. Stokhof (Eds.), Proceedings of the 10th Amsterdam Colloquium (pp. 133–142).

  • Chomsky, N. (1957). Syntactic structures. The Hague: Mouton.

    Google Scholar 

  • Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.

    Google Scholar 

  • Chomsky, N. (1981). Lectures on government and binding. Dordrecht: Foris.

    Google Scholar 

  • Chomsky, N. (1982). Concepts and consequences of the theory of government and binding. Cambridge, MA: MIT Press.

    Google Scholar 

  • Comrie, B. (1974). Causatives and universal grammar. Transactions of the Philological Society, 73(1), 1–32.

  • Copestake, A., Flickinger, D., Malouf, R., Riehemann, S., & Sag. I. (1995). Translation using minimal recursion semantics. In Proceedings of the 6th international conference on theoretical and methodological issues in machine translation (TMI95). Leuven, Belgium.

  • de Groote, P. (2001). Towards abstract categorial grammars. In 39th annual meeting and 10th conference of the European chapter, proceedings of the conference of the ACL (pp. 148–155).

  • de Groote, P. (2006). Towards a montagovian account of dynamics. In Proceedings of semantics and linguistic theory, vol. 16.

  • Dershowitz, N., & Jouannaud, J.-P. (1990). Rewrite systems. In J. van Leeuwen (Ed.), Handbook of Theoretical Computer Science (pp. 243–320). Amsterdam: Elsevier Science Publishers B.V. and The MIT Press.

  • Dikovsky, A. (2007). A finite-state functional grammar architecture. In D. Leivant, & R. de Queiroz (Eds.) Logic, language, information and computation. Proceedings of the 14th international workshop WoLLIC 2007, LNCS 4576 (pp. 131–146). Rio de Janeiro, Brazil: Springer Verlag.

  • Dikovsky, A. (2009). On speaker’s stance meaning of discourse. In Proceedings of the 4th international conference “Meaning-Text Theory” (MTT 2009). Montreal, Canada.

  • Dikovsky, A. (2010). On constructive semantics of natural language. In S. Feferman, & W. Sieg (Eds) Proofs, categories and computations: essays in honor of Grigori Mints. London, UK: College Publications. With the collaboration of Vladik Kreinovich, Vladimir Lifschitz, and Ruy de Queiroz.

  • Doets, K. (1994). From logic to logic programming. Cambridge, MA: The MIT PRESS.

    Google Scholar 

  • Fraenkel, A. A., Bar-Hillel, Y., & Levy, A. (1973). Foundations of set theory (2nd ed.)., Studies in logic and the foundations of mathematics Amsterdam: Elsevier.

    Google Scholar 

  • Frege, G. (1892). Uber sinn und bedeutung. Z. Philos. Philisoph. Kritik, 100:25–50. On Sense and Reference, Translations from the Philosophical Writings of Gottlob Frege (trans: P.T. Geach & M. BLack, eds 1952) (pp. 56–78). Oxford: Blackwell.

  • Gamut, L. T. F. (1991). Logic, language, and meaning. Vol I: Introduction to logic; Vol II: Intensional logic and logical grammar. Chicago and London: University of Chicago Press.

  • Glyn, V. (1994). Morrill, type logical grammar. Categorial logic of signs. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Grimshaw, J. (1990). Argument structure. Cambridge: The MIT Press.

    Google Scholar 

  • Groenendijk, J., & Stokhof, M. (1991). Dynamic predicate logic. Linguistics and Philosophy, 14, 39–100.

    Article  Google Scholar 

  • Heim, I. (1983). File change semantics and the familiarity theory of definiteness. In R. Bäuerle, C. Schwarze, & A. von Stechow (Eds.), Meaning, Use and Interpretation of Language (pp. 164–189). Berlin: De Gruyter.

  • Hepple, M. (1990). The grammar and processing of order and dependency: A categorial approach. Ph.D. thesis, University of Edinburg.

  • Jackendoff, R. S. (1972). Semantic interpretation in generative grammar. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Jech, T. (2003). Set theory: The third (Millennium ed.). Berlin: Springer. (Revised and Expanded).

    Google Scholar 

  • Kamin, S., Lévy, J. -J. (1980). Two generalizations of the recursive path ordering. Unpublished manuscript.

  • Kamp, H. (1981). A theory of truth and semantic representation. In J. Groenendijk, T. Janssen, & M. Stokhoff (Eds.), Formal methods in the study of language. Dordrecht: Foris.

    Google Scholar 

  • Kamp, H., & Reyle, U. (1994). From discourse to logic: Introduction to modeltheoretic semantics of natural language. Formal logic and discourse representation theory. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Kamp, H., van Genabith, J., & Reyle, U. (2011). Discourse representation theory. In D. M. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic (2nd ed., Vol. 15, pp. 125–394). Dordrecht: Springer.

  • Keenan, E. (1996). The semantics of determiners. In S. Lappin (Ed.), The handbook of contemporary semantic theory (pp. 41–63). Oxford: Blackwell.

    Google Scholar 

  • Keenan, E. (2006). Quantifiers: Semantics. In K. Brown (Ed.), Encyclopedia of language & linguistics (Vol. 10, pp. 302–308). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Keenan, E., & Westerståhl, D. (1997). Generalized quantifiers in linguistics and logic. In J. van Benthem & A. ter Meulen (Eds.), Handbook of logic and language, chapter 15 (pp. 837–893). Amsterdam, Cambridge: North-Holland Elsevier, The MIT Press.

    Chapter  Google Scholar 

  • Keenan, E. L., & Comrie, B. (1977). Noun phrase accessibility and universal grammar. Linguistic Inquery, 8, 63–99.

    Google Scholar 

  • Lambek, J. (1958). The mathematics of sentence structure. American Mathematical Monthly, 65, 154–169.

    Article  Google Scholar 

  • Lambek, J. (1961). On the calculus of syntactic types. In R. Jacobson (Ed) Structure of languages and its mathematical aspects. Proceedings of the symposia in applied mathematics, Vol. XII, American Mathematical Society (pp. 166–178).

  • Lloyd, J. W. (1984). Foundations of logic programming. Berlin: Springer.

    Book  Google Scholar 

  • Mel’čuk, I. (1974). Opyt teorii lingvističeskix modelej “Smysl \(\Longleftrightarrow \) Tekst” [Towards a Theory of Meaning-Text Linguistic Models]. Moscow: Nauka.

  • Mel’čuk, I. (1981). Meaning-text models: A recent trend in Soviet Linguistics. Annual Review of Antropology, 10, 27–62.

    Article  Google Scholar 

  • Mel’čuk, I. (1988). Dependency syntax. Albany, NY: SUNY Press.

    Google Scholar 

  • Mel’čuk, I. (1994). Cours de morphologie générale (Vol. I). Montréal: Presses de l’Université de Montréal/CNRS.

    Google Scholar 

  • Mel’čuk, I. (1996). Lexical functions: A tool for the description of lexical relations in the lexicon. In L. Wanner (Ed.), Lexical functions for lexicology and natural language processing (pp. 37–102). Amsterdam: Benjamins.

    Google Scholar 

  • Mel’čuk, I. (1998). Collocations and lexical functions. In Anthony P. Cowie (Ed.), Phraseology, theory, analysis, and applications (pp. 25–53). Oxford: Clarendon.

    Google Scholar 

  • Mel’čuk, I. (1997). Vers une linguistique \(\ll \) Sens–Texte \(\gg \). Leçon inagurale au Collège de France.

  • Mel’čuk, I. A. (2003). Levels of dependency in linguistic description: concepts and problems. In V. Agel, et al. (Eds.), An international handbook of contemporary research (pp. 188–229). Berlin: Walter de Gruyter.

    Google Scholar 

  • Mel’čuk, I. (2007). Lexical functions. In H. Burger, D. Dobrovolskij, P. Kuhn, & N. Norrick (Eds.), Phraseology, an international handbook of contemporary research (pp. 119–131). Berlin: W. de Gruyter.

    Google Scholar 

  • Montague, R. (1974). The proper treatment of quantification in ordinary English. In R. Thomason (Ed.), Formal philosophy: Selected papers of Richard Motague (pp. 247–270). New Haven, CT: Yale Univ. Press.

    Google Scholar 

  • Moortgat, M. (1997). Categorial type logics. In J. van Benthem & A. ter Meulen (Eds.), Handbook of logic and language, chapter 2 (pp. 93–177). Amsterdam, Cambridge: North-Holland Elsevier, The MIT Press.

    Chapter  Google Scholar 

  • Muskens, R. (1995). Order-independence and underspecification. In J. Groenendijk (Ed) Ellipsis, underspecification, events and more in dynamic semantics. DYANA Deliverable R.2.2.C.

  • Steedman, M. (1988). Combinators and grammars. In R. T. Oehrle, E. Bach, & D. Wheeler (Eds.), Categorial grammars and natural language structures. Dordrecht: Reidel.

    Google Scholar 

  • Steedman, M. (1996). Surface structure and interpretation. Cambridge, MA: MIT Press.

    Google Scholar 

  • Takeuti, G., & Zaring, W. M. (1971). Introduction to axiomatic set theory. Berlin: Springer.

    Book  Google Scholar 

  • Tarski, A. (1944). The semantic conception of truth and the foundations of semantics. Philosophy and Phenomenological Research, 4, 341–376.

    Article  Google Scholar 

  • Tesnière, L. (1959). Éléments de syntaxe structurale. Paris: Librairie C. Klincksiek.

    Google Scholar 

  • Van Valin Jr, R. D. (1999). Generalized semantic roles and the syntax-semantics interface. In F. Corblin, C. Dobrovie-Sorin, J.-M. Marandin (Eds) Empirical issues in formal syntax and semantics 2: Selected papers from the Colloque de Syntaxe et Semantique Paris (pp. 373–388).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Dikovsky.

Appendix

Appendix

1.1 Classical Logic Programs

In this subsection we remind the notation, definitions and main facts of the classical theory of logic programs (cf. Lloyd 1984; Doets 1994) and apply them to the \({{\mathcal {L}}{\mathcal {P}}}_{O}\)-Programs used above in Sect. 5.

\({{\mathcal {L}}{\mathcal {P}}}_{O}\) -Programs are finite sets of \({{\mathcal {L}}{\mathcal {P}}}_{O}\) clauses. In the classical logic programming are considered finite logic programs in a fixed finite signature. Respectively, we consider here the \({{\mathcal {L}}{\mathcal {P}}}_{O}\)-programs \(P=\{\phi _1,\ldots ,\phi _N\}\) in the fixed finite signature \(\varOmega _P\). Their proto-models are defined above (see Definition 5). We apply to the \({{\mathcal {L}}{\mathcal {P}}}_{O}\)-programs the notation of the classical logic programming and cite several important facts of this theory, which also hold for the \({{\mathcal {L}}{\mathcal {P}}}_{O}\)-programs and their proto-models. In particular, we use Lemma 1 and consider proto-models as Herbrand proto-models.

Definition 22

For a \({{\mathcal {L}}{\mathcal {P}}}_{O}\)-program P, \(M_P = \{A\in GA(\varOmega _{O})\Vert P\,\models A\}\).

Clearly, \(M_P\) is a proto-model for every \({{\mathcal {L}}{\mathcal {P}}}_{O}\)-program P.

Lemma 7

(see Lloyd 1984; Doets 1994)

  1. 1.

    \(M_P\,\models P\).

  2. 2.

    If \(\varSigma \,\models P\) then \(M_P \subseteq \varSigma \) for every proto-model \(\varSigma \).

  3. 3.

    \(M_P = \bigcap \limits _{\{\varSigma \in {\mathcal {P}}{\mathcal {M}}\Vert \varSigma \,\models P\}}\ \varSigma \)

This fact implies that \(M_P\) is the minimal proto-model of P. It is characterized through the immediate consequence operator \(T_P\) of P.

Definition 23

(Immediate consequence operator \(T_P\)) Let \(\varSigma = (I,\Vert ..\Vert ^{\varSigma },F^{\varSigma })\) be a proto-model. In the classical Herbrand model terms it is defined as follows:

$$\begin{aligned} T_P(\varSigma )= & {} \{A\circ \sigma \in GA({{\mathcal {L}}{\mathcal {P}}}_{O}) \Vert (A\leftarrow B_1,\ldots ,B_m)\in \\&\qquad \quad P, B_1\circ \sigma ,\ldots ,B_m\circ \sigma \in \varSigma , \sigma \in \mathbf{sub}(\varOmega _\varSigma )\}. \end{aligned}$$

In terms of extensional proto-models this corresponds to the following:

  1. 1.

    Ground atoms. Let \(\phi \in GA({{\mathcal {L}}{\mathcal {P}}}_{O})\).

  2. 1.1.

    If \(\phi = (\mathbf{sg}~P(i_1,\ldots ,i_k) \in i)\) for some \(i_1,\ldots ,i_k\in I\) and \(i \in I^\mathbf{p}\) (is propositional), then

    $$\begin{aligned} \Vert j\Vert ^{T_\phi (\varSigma )} = \left\{ \begin{array}{ll} \Vert i\Vert ^\varSigma \cup \{\mathbf{sg}~P(i_1,\ldots ,i_k) \}, &{} if\ j = i,\\ \Vert j\Vert ^\varSigma , &{} \textit{otherwise}. \\ \end{array} \right. \end{aligned}$$
  3. 1.2.

    if \(\phi = (i_1 \in i_2)\) for some \(i_1\in I\), \(i_2\in I^\mathbf{o}\), then

    $$\begin{aligned} \Vert i\Vert ^{T_\phi (\varSigma )} = \left\{ \begin{array}{ll} \Vert i_2 \Vert ^\varSigma \cup \{ i_1 \}, &{} if\ i = i_2,\\ \Vert i \Vert ^\varSigma , &{} otherwise. \\ \end{array} \right. \end{aligned}$$
  4. 1.3.

    if \(\phi = (i\ f\ v)\) for some \(i \in I\), \(f\in F\) and \(v \in V \cup I\), then

    $$\begin{aligned} F^{T_\phi (\varSigma )} = F^\varSigma \cup \{(i\ f\ v)\}. \end{aligned}$$
  5. 2.

    Clauses. Let \(\phi = (A ~\leftarrow ~B_1,\ldots ,B_n)\) be a clause in which \(A, B_1,\ldots ,B_n \in AF({{\mathcal {L}}{\mathcal {P}}}_{O})\). Then \(T_\phi (\varSigma )\) is as follows:Footnote 24

    $$\begin{aligned} T_P(\varSigma ) = \begin{array}{c} \bigcup \limits _{\sigma \in \mathbf{sub}(\varOmega _\varSigma ),}\\ {\varSigma \,\models B_j\circ \sigma , 1\le j\le n} \end{array} T_{(A\circ \sigma )}(\varSigma ) \end{aligned}$$
  6. 3.

    Programs. For a \({{\mathcal {L}}{\mathcal {P}}}_{O}\)-program \(P=\{\phi _1,\ldots ,\phi _N\}\):

    $$\begin{aligned} T_P(\varSigma ) = \bigcup \limits _{\phi \in P}\ T_{\phi }(\varSigma ) \end{aligned}$$

Definition 24

Operator T on a complete lattice L is monotonic if \(T(X) \subseteq T(Y)\) for all subsets \(X\subseteq Y \subseteq L\).

T is finitary if for every \(A\in L\) and \(X\subseteq L\) such that \(A\in T(X)\), there is a finite \(Y\subseteq X\) such that \(A\in T(Y)\). T is continuous if \(T(\bigcup X) = \bigcup T(X)\) for every directed subset \(X\subseteq L\) (X is directed if every its finite subset \(Y\subseteq X\) has an upper bound in Y).

Lemma 8

(see Lloyd 1984; Doets 1994) The immediate consequence operator of every \({{\mathcal {L}}{\mathcal {P}}}_{O}\)-program P is monotonic and finitary.

Corollary 4

(see Lloyd 1984; Doets 1994) The immediate consequence operator of every \({{\mathcal {L}}{\mathcal {P}}}_{O}\)-program P is continuous.

Definition 25

(Powers of the immediate consequence operator) Let P be an \({{\mathcal {L}}{\mathcal {P}}}_{O}\)-program. Then:

(7.1)

Definition 26

Let L be a lattice and T be an operator over L. \(X\in L\) is a fixpoint of T if \(t(X) = X\). X is a least fixpoint of T (denoted lfp(T)) if \(X \subseteq Y\) for every fixpoint Y of T.

Evidently, if T has lfp(T), it is unique. One of the central facts of the classical logic programming is the following characterisation theorem of van Emden and Kowalski.

Theorem 6

(see Lloyd 1984; Doets 1994) For every \({{\mathcal {L}}{\mathcal {P}}}_{O}\)-program P,

  1. 1.

    the powers of its immediate consequence operator form the increasing chain:

    $$\begin{aligned} T_P\uparrow ^0 \subseteq T_P\uparrow ^1 \subseteq T_P\uparrow ^2 \subseteq \ldots \subseteq T_P\uparrow ^{\omega }; \end{aligned}$$
  2. 2.

    \(M_P = lfp(T_P) = T_P\uparrow ^{\omega }\).

1.2 Examples of Meaning Computation

In this subsection we show the computation of the meaning of sentences in Examples 19.

\(\mathbf {1.}\) Translation of the DD-tree \(D_1\) of the sentence

$$\begin{aligned} {\texttt {\textit{The morning star shines by reflected light}}} \end{aligned}$$

shown in Fig. 3.

  1. 1.

    \(\varDelta (r_3) =_{(4.22)} \varLambda (r_3) =_{(4.5)} ((\lambda \, \xi \, x\, .\, [oi(x), (x \in {\textsc {morning}}^{\prime })]\ \varXi ) \ \mathbf{newoi})\)

          \(= [oi(i_1), (i_1 \in {\textsc {morning}}^{\prime })]\).

  2. 2.

    \(\varDelta (r_2) =_{(4.23)} \varLambda (r_2) \circ _{a} \varDelta (r_3)=_{(4.13)} ((\lambda \, \xi \, x\, Z_1\, .\, [oi(x), (x \in {\textsc {star}}^{\prime }), {\textsc {APPEL}}(x)=oi(Z_1),\)

          \({\textsc {NUM}}(x)={\textsc {SG}}, Z_1]\ \varXi ) \ \mathbf{newoi}) \circ _{a} \varDelta (r_3)\)

          \(= \lambda \, Z_1\, .\, [oi(i_2), (i_2 \in {\textsc {star}}^{\prime }), {\textsc {APPEL}}(i_2)=oi(Z_1), {\textsc {NUM}}(i_2)={\textsc {SG}}, Z_1] \circ _{a} \varDelta (r_3)\)

          \(=_{(4.16)} [oi(i_2), (i_2 \in {\textsc {star}}^{\prime }), {\textsc {APPEL}}(i_2)=i_1, {\textsc {NUM}}(i_2)={\textsc {SG}}, [oi(i_1), (i_1 \in {\textsc {morning}}^{\prime })]]\).

  3. 3.

    \(\varDelta (r_5) =_{(4.22)} \varLambda (r_5) =_{(4.5)} ((\lambda \, \xi \, x\, .\, [oi(x), (x \in {\textsc {reflected}}^{\prime })]\ \varXi ) \ \mathbf{newoi})\)

          \(= [oi(i_3), (i_3 \in {\textsc {reflected}}^{\prime })]\).

  4. 4.

    \(\varDelta (r_4) =_{(4.23)} \varLambda (r_4) \circ _{a} \varDelta (r_5)=_{(4.5)} ((\lambda \, \xi \, x\, Z_1\, .\, [oi(x), (x \in {\textsc {light}}^{\prime }), {\textsc {NATURE}}(x)=\)

    \(oi(Z_1),{\textsc {COUNT}}(x)= -, Z_1]\ \varXi ) \ \mathbf{newoi}) \circ _{a} \varDelta (r_5)\)

          \(= \lambda \, Z_1\, .\, [oi(i_4), (i_4 \in {\textsc {light}}^{\prime }), {\textsc {NATURE}}(i_4)=oi(Z_1), {\textsc {COUNT}}(i_4)= -, Z_1] \circ _{a} \varDelta (r_5)\)

    \(=_{(4.16)} [oi(i_4), (i_4 \in {\textsc {light}}^{\prime }), {\textsc {NATURE}}(i_4)=i_3, {\textsc {COUNT}}(i_4)= -, [oi(i_3), \)

    \((i_3 \in {\textsc {reflected}}^{\prime })]]\).

  5. 5.

    \(\varDelta (D_1) = \varDelta (r_1) =_{(4.23)} \varLambda (r_1) \circ _{a} (\varDelta (r_2),\varDelta (r_4))\)

          \(=_{(4.6)} ((\lambda \, \xi \, x\, U_1\, Z_1\, .\, [oi(x), (x \in {\textsc {shine}}^{\prime }), ({\textsc {shine}}(oi(U_1)) \in x), dd(oi(U_1)) = \mathbf{D}\, , \)

    \({\textsc {MEANS}}(x) = oi(Z_1), dd(oi(Z_1)) = \mathbf{G}\,, {\textsc {A/T}}(x) = {\textsc {DURAT/PRES}}, {\textsc {M}}(x) = {\textsc {IND}}, U_1, Z_1] \varXi )\ \mathbf{newoi})\)

          \(\circ _{a} (\varDelta (r_2), \varDelta (r_4))\)

    \(=_{(4.16)} \lambda \, U_1\, Z_1\, .\, [oi(i_5), (i_5 \in {\textsc {shine}}^{\prime }), ({\textsc {shine}}(oi(U_1)) \in i_1), dd(oi(U_1)) = \mathbf{D}\, , {\textsc {MEANS}}(i_5) =\)

          \(oi(Z_1), dd(oi(Z_1)) = \mathbf{G}\,, {\textsc {A/T}}(i_5) = {\textsc {DURAT/PRES}}, {\textsc {M}}(i_5) = {\textsc {IND}}, U_1, Z_1] \circ _{a} (\varDelta (r_2), \varDelta (r_4))\)

          \(= [oi(i_5), (i_5 \in {\textsc {shine}}^{\prime }), ({\textsc {shine}}(i_2) \in i_5), dd(i_2) = \mathbf{D}\, , {\textsc {MEANS}}(i_5) = i_4, {\textsc {A/T}}(i_5) = {\textsc {DURAT/PRES}}, \)

          \({\textsc {M}}(i_5) = {\textsc {IND}}, [oi(i_2), (i_2 \in {\textsc {star}}^{\prime }), {\textsc {APPEL}}(i_2)=i_1, {\textsc {NUM}}(i_2)={\textsc {SG}},\)

          \([oi(i_1), (i_1 \in {\textsc {morning}}^{\prime })]], [oi(i_4), (i_4 \in {\textsc {light}}^{\prime }), {\textsc {NATURE}}(i_4)=i_3, {\textsc {COUNT}}(i_4)= -,\)

          \([oi(i_3), (i_3 \in {\textsc {reflected}}^{\prime })]] ]\).

\(\mathbf {2.}\) Translation of the DD-tree \(D_2\) of the sentence

$$\begin{aligned}&{\texttt {\textit{The Persians were definitely defeated by Greeks near}}}\\&{\texttt {\textit{Plataea}}} \end{aligned}$$

shown in Fig. 5.

  1. 1.

          \( =+]\ \varXi ) \ \mathbf{newoi}) = [oi(i_1), (i_1 \in {\textsc {greek}}^{\prime }), {\textsc {NUM}}(i_1)={\textsc {PL}}, {\textsc {HUMAN}}(i_1)=+]\).

  2. 2.

          \( =+]\ \varXi ) \ \mathbf{newoi}) = [oi(i_2), (i_2 \in {\textsc {persian}}^{\prime }), {\textsc {NUM}}(i_2)={\textsc {PL}}, {\textsc {HUMAN}}(i_2)=+]\).

  3. 3.

    \(\varDelta (r_6) =_{(4.22)} \varLambda (r_6) =_{(4.5)} ((\lambda \, \xi \, x\, .\, [oi(x), (x \in {\textsc {near}}^{\prime }) ]\ \varXi ) \ \mathbf{newoi})\)

          \(= [oi(i_3), (i_3 \in {\textsc {near}}^{\prime })]\).

  4. 4.

    \(\varDelta (r_4) =_{(4.23)} \varLambda (r_4) \circ _{a} \varDelta (r_6)\)

          \(=_{(4.5)} ((\lambda \, \xi \, x\, Z_1\, .\, [oi(x), (x \in {\textsc {plataea}}^{\prime }), {\textsc {DIST}}(x) = oi(Z_1),{\textsc {APPEL}}(x)= {\textsc {PLATAEA}}, Z_1]\)

          \( \varXi ) \ \mathbf{newoi}) \circ _{a} \varDelta (r_6)\)

          \(= \lambda \, Z_1\, .\, [oi(i_4), (i_4 \in {\textsc {plataea}}^{\prime }), {\textsc {DIST}}(i_4)=oi(Z_1), {\textsc {APPEL}}(i_4)= {\textsc {PLATAEA}}, Z_1] \circ _{a} \varDelta (r_6)\)

          \(=_{(4.16)} [oi(i_4), (i_4 \in {\textsc {plataea}}^{\prime }), {\textsc {DIST}}(i_4)=i_3, {\textsc {APPEL}}(i_4)\!= {\textsc {PLATAEA}}, [oi(i_3), (i_3\! \in {\textsc {near}}^{\prime })]]\).

  5. 5.

    \(\varDelta (r_5) =_{(4.22)} \varLambda (r_5) =_{(4.5)} ((\lambda \, \xi \, x\, .\, [oi(x), (x \in {\textsc {definitely}}^{\prime }) ]\ \varXi ) \ \mathbf{newoi})\)

          \(= [oi(i_5), (i_5 \in {\textsc {definitely}}^{\prime })]\).

  6. 6.

    \(\varDelta (D_2) = \varDelta (r_1) =_{(4.23)} \varLambda (r_1) \circ _{a} (\varDelta (r_2),\varDelta (r_3),\varDelta (r_4),\varDelta (r_5))\)

          \(=_{(4.6)} ((\lambda \, \xi \, x\, U_1\, U_2\, Z_1\, Z_2\, .\, [oi(x), (x \in {\textsc {defeat}}^{\prime }), ({\textsc {defeat}}(oi(U_1),oi(U_2)) \in x), \)

          \( dd(oi(U_1)) = \mathbf{G}\,, dd(oi(U_2)) = \mathbf{G}\,, {\textsc {LOC}}(x) = oi(Z_1)\), \({\textsc {MANNER}}(x) = oi(Z_2)\),

          \({\textsc {A/T}}(x) = {\textsc {POINT/PAST}}, {\textsc {M}}(x) = {\textsc {IND}}, {\textsc {DTH}}(x) = {\textsc {PASS}}, U_1, U_2, Z_1, Z_2]\)

          \(\varXi )\ \mathbf{newoi}) \circ _{a} (\varDelta (r_2),\varDelta (r_3),\varDelta (r_4),\varDelta (r_5))\)

          \(=_{(4.16)} \lambda \, U_1\, U_2\, Z_1\, Z_2\, .\, [oi(i_6), (i_6 \in {\textsc {defeat}}^{\prime }), ({\textsc {defeat}}(oi(U_1), oi(U_2)) \in i_6), \)

          \(dd(oi(U_1)) = \mathbf{G}\,, dd(oi(U_2)) = \mathbf{G}\,, {\textsc {LOC}}(i_6) = oi(Z_1)\), \({\textsc {MANNER}}(i_6) = oi(Z_2)\),

          \({\textsc {A/T}}(i_6) = {\textsc {POINT/PAST}}, {\textsc {M}}(i_6) = {\textsc {IND}}, {\textsc {DTH}}(i_6) = {\textsc {PASS}}, U_1, U_2, Z_1, Z_2] \)

          \(\circ _{a}\ (\varDelta (r_2),\varDelta (r_3),\varDelta (r_4),\varDelta (r_5))\)

          \(= [oi(i_6), (i_6 \in {\textsc {defeat}}^{\prime }), ({\textsc {defeat}}(i_1,i_2) \in i_6), dd(i_1) = \mathbf{G}\,, dd(i_2) = \mathbf{G}\,,\)

          \({\textsc {LOC}}(i_6) = i_4, {\textsc {MANNER}}(i_6) = i_5, {\textsc {A/T}}(i_6) = {\textsc {POINT/PAST}}, {\textsc {M}}(i_6) = {\textsc {IND}},\)

          \({\textsc {DTH}}(i_6) = {\textsc {PASS}}, [oi(i_1), (i_1 \in {\textsc {greek}}^{\prime }), {\textsc {NUM}}(i_1)={\textsc {PL}}, {\textsc {HUMAN}}(i_1)=+], [oi(i_2),\)

          \((i_2 \in {\textsc {persian}}^{\prime }), {\textsc {NUM}}(i_2) ={\textsc {PL}}, {\textsc {HUMAN}}(i_2)=+], [oi(i_4), (i_4 \in {\textsc {plataea}}^{\prime }),\)

          \({\textsc {DIST}}(i_4)=i_3, {\textsc {APPEL}}(i_4)= {\textsc {PLATAEA}}, [oi(i_3), (i_3 \in {\textsc {near}}^{\prime })]], [oi(i_5), (i_5 \in {\textsc {definitely}}^{\prime })] ]\).

\(\mathbf {3.}\) Translation of the DD-tree \(D_3\) of the sentence

$$\begin{aligned} {\texttt {\textit{Their son is a smart guy}}} \end{aligned}$$

shown in Fig. 7.

  1. 1.

    \(\varDelta (r_4) =_{(4.22)} \varLambda (\mathbf{coref}~l_{they}) =_{(4.4)} ((\lambda \, \xi \, x\, .\, [oi( x ),\ (x \equiv \xi ( l_{they} ))]\ \varXi ) \mathbf{newoi})\)

          \(= [oi( i_1),\ (i_1 \equiv i_{they})]\), where \(i_{they} = \varXi ( l_{they} )\).

  2. 2.

    \(\varDelta (r_2) =_{(4.23)} \varLambda (r_2) \circ _{a} \varDelta (r_4) \)

          \(=_{(4.13)} ((\lambda \, \xi \, x\, Z\, .\, [oi(x), (x \in {\textsc {son}}^{\prime }), {\textsc {APPRT}}(x)=oi(Z), {\textsc {NUM}}(x)={\textsc {SG}}, {\textsc {HUMAN}}(x)=+, Z]\)

          \(\varXi ) \ \mathbf{newoi}) \circ _{a} \varDelta (r_4)\)

          \(= \lambda \, Z\, .\, [oi(i_1), (i_2 \in {\textsc {son}}^{\prime }), {\textsc {APPRT}}(i_2)=oi(Z), {\textsc {NUM}}(i_2)={\textsc {SG}}, {\textsc {HUMAN}}(i_2)=+, Z]\)

          \(\circ _{a}\, \varDelta (r_4)\)

          \(=_{(4.16)} [oi(i_2), (i_2 \in {\textsc {son}}^{\prime }), {\textsc {APPRT}}(i_2)=i_1, {\textsc {NUM}}(i_2)={\textsc {SG}}, {\textsc {HUMAN}}(i_2)=+, [oi( i_1),\)

          \((i_1 \equiv i_{they})]]\).

  3. 3.

    \(\varDelta (r_6) =_{(4.22)} \varLambda (r_6) =_{(4.5)} ((\lambda \ \xi \ x\, .\ [oi(x),\ (x \in \xi ({\textsc {neutr}}))]\ \varXi )\ \mathbf{newoi})\)

          \( = [oi(i_3),\ (i_3 \in {\textsc {neutr}}^{\prime })]\).

  4. 4.

    \(\varDelta (r_5) =_{(4.23)} \varLambda (r_5) \circ _{a} \varDelta (r_6) \)

          \( =_{(4.14)} ((\lambda \ \xi \ x\ Z\ y\, . [oi( x ),\ (x \in {\textsc {smart}}^{\prime }), ({\textsc {smart}}(y, oi(Z)) \in x), {\textsc {MAGN}}(x) = oi(Z), Z]\)

          \(\varXi )\ \mathbf{newoi}) \circ _{a} \varDelta (r_6) \)

          \( = \lambda \ Z\ y\, . [oi( i_4 ),\ (i_4 \in {\textsc {smart}}^{\prime }), ({\textsc {smart}}(y, oi(Z)) \in i_4), {\textsc {MAGN}}(i_4) = oi(Z), Z]\ \varXi )\)

          \(\mathbf{newoi}) \circ _{a} \varDelta (r_6)\)

          \( = \lambda \ y\, . [oi(i_4),\ (i_4 \in {\textsc {smart}}^{\prime }), ({\textsc {smart}}(y, i_3) \in i_4), {\textsc {MAGN}}(i_4) = i_3, [oi(i_3), \)

          \( (i_3 \in {\textsc {neutr}}^{\prime })]] \).

  5. 5.

    \(\varDelta (r_3) =_{(4.23)} \varLambda (r_3) \circ _{a} \varDelta (r_5) \)

          \(=_{(4.13)} ((\lambda \ \xi \ x\ Y\, . [oi( x ),\ (x \in {\textsc {guy}}^{\prime }), (Y\ x), {\textsc {NUM}}(x)={\textsc {SG}}, {\textsc {HUMAN}}(x)=+ ]\ \varXi )\ \mathbf{newoi})\)

          \(\circ _{a} \varDelta (r_5) \)

          \(= \lambda \ Y\, .\, [oi( i_5 ),\ (i_5 \in {\textsc {guy}}^{\prime }), (Y\ i_5), {\textsc {NUM}}(i_5)={\textsc {SG}}, {\textsc {HUMAN}}(i_5)=+ ] \circ _{a} \varDelta (r_5)\)

          \(= [oi( i_5 ),\ (i_5 \in {\textsc {guy}}^{\prime }), [oi(i_4),\ (i_4 \in {\textsc {smart}}^{\prime }), ({\textsc {smart}}(i_5, i_3) \in i_4), {\textsc {MAGN}}(i_4) = i_3,\)

          \( [oi(i_3), (i_3 \in {\textsc {neutr}}^{\prime })]], {\textsc {NUM}}(i_5)={\textsc {SG}}, {\textsc {HUMAN}}(i_5)=+ ]\).

  6. 6.

    \(\varDelta (r_1) =_{(4.23)} \varLambda (r_1) \circ _{a} (\varDelta (r_2), \varDelta (r_3))\)

          \(=_{(4.10)} ((\lambda \ \xi \ x\ U_1\ U_2\, . [oi( x ),\ (x \in {\textsc {be-a}}^{\prime }),\, ({\textsc {be-a}}(oi(U_1), oi(U_2)) \in x),\)

          \((oi(U_1) \in oi(U_2)), dd(oi(U_1)) = \mathbf{D}\, ,\ dd(oi(U_2)) = \mathbf{E}\,, {\textsc {A/T}}(x)={\textsc {DURAT/PRES}},\)

          \({\textsc {M}}(x)={\textsc {IND}}, U_1,U_2]\ \varXi )\ \mathbf{newoi}) \circ _{a} (\varDelta (r_2), \varDelta (r_3))\)

          \(= \lambda \ U_1\ U_2\, . [oi( i_6 ),\ (i_6 \in {\textsc {be-a}}^{\prime }),\, ({\textsc {be-a}}(oi(U_1), oi(U_2)) \in i_6), (oi(U_1) \in oi(U_2)), \)

          \(dd(oi(U_1)) = \mathbf{D}\, ,\ dd(oi(U_2)) = \mathbf{E}\,, {\textsc {A/T}}(i_6)={\textsc {DURAT/PRES}}, {\textsc {M}}(i_6)={\textsc {IND}}, U_1,U_2]\)

          \(\circ _{a} (\varDelta (r_2), \varDelta (r_3))\)

          \( = [oi( i_6 ),\ (i_6 \in {\textsc {be-a}}^{\prime }),\, ({\textsc {be-a}}(i_2, i_5) \in i_6), (i_2 \in i_5), dd(i_2) = \mathbf{D}\, ,\ dd(i_5) = \mathbf{E}\,,\)

          \({\textsc {A/T}}(i_6)={\textsc {DURAT/PRES}}, {\textsc {M}}(i_6)={\textsc {IND}}, [oi(i_2), (i_2 \in {\textsc {son}}^{\prime }), {\textsc {APPRT}}(i_2)=i_1,\)

          \({\textsc {NUM}}(i_2)={\textsc {SG}}, {\textsc {HUMAN}}(i_2)=+, [oi( i_1),\ (i_1 \equiv i_{they})]], [oi( i_5 ),\ (i_5 \in {\textsc {guy}}^{\prime }), [oi(i_4),\)

          \((i_4 \in {\textsc {smart}}^{\prime }), ({\textsc {smart}}(i_5, i_3) \in i_4), {\textsc {MAGN}}(i_4) = i_3, [oi(i_3), (i_3 \in {\textsc {neutr}}^{\prime })]],\)

          \({\textsc {NUM}}(i_5)={\textsc {SG}}, {\textsc {HUMAN}}(i_5)=+ ]]\).

\(\mathbf {4.}\) Translation of the DD-tree \(D_4\) of the sentence

$$\begin{aligned} {\texttt {\textit{Their son is very smart}}} \end{aligned}$$

shown in Fig. 9.

  1. 1.

    \(\varDelta (r_4) =_{Example~3} [oi( i_1),\ (i_1 \equiv i_{they})]\), where \(i_{they} = \varXi ( l_{they} )\).

  2. 2.

    \(\varDelta (r_2) =_{Example~3} [oi(i_2), (i_2 \in {\textsc {son}}^{\prime }), {\textsc {APPRT}}(i_2)=i_1, {\textsc {NUM}}(i_2)={\textsc {SG}},\)

          \({\textsc {HUMAN}}(i_2)=+, [oi( i_1), (i_1 \equiv i_{they})]]\).

  3. 3.

    \(\varDelta (r_5) =_{(4.22)} \varLambda (r_5) =_{(4.5)} ((\lambda \ \xi \ x\, .\ [oi(x),\ (x \in (\xi \ {\textsc {very}}))]\ \varXi )\ \mathbf{newoi})\)

          \( = [oi(i_3),\ (i_3 \in {\textsc {very}}^{\prime })]\).

  4. 4.

    \(\varDelta (r_3) =_{Example~3} \lambda \ y\, . [oi(i_4),\ (i_4 \in {\textsc {smart}}^{\prime }), ({\textsc {smart}}(y, i_3) \in i_4), {\textsc {MAGN}}(i_4) = i_3,\)

          \( [oi(i_3),\ (i_3 \in {\textsc {very}}^{\prime })]]\).

  5. 5.

    \(\varDelta (r_1) =_{(4.24)} \varLambda (r_1) \circ _{pa} (\varDelta (r_2), \varDelta (r_3)) =_{(4.17)} (\varLambda (r_1)\, \varDelta (r_2)\, (\varDelta (r_3)\, oi(\varDelta (r_2))) )\)

          \(=_{(4.11)} (((\lambda \ \xi \ x\ U_1\ U_2\, . [oi( x ),\ (x \in {\textsc {be-prop}}^{\prime }),\, ({\textsc {be-prop}}(oi(U_1), oi(U_2)) \in x),\)

          \(dd(oi(U_1)) = \mathbf{D}\, , {\textsc {A/T}}(x)={\textsc {DURAT/PRES}}, {\textsc {M}}(x)={\textsc {IND}}, U_1, U_2 ]\ \varXi )\ \mathbf{newoi})\, \varDelta (r_2)\)

          \((\varDelta (r_3)\, \varDelta (r_2))) \)

          \(= ( \lambda \ U_1\ U_2\, . [oi( i_5 ),\ (i_5 \in {\textsc {be-prop}}^{\prime }),\, ({\textsc {be-prop}}(oi(U_1), oi(U_2)) \in i_5),\)

          \(dd(oi(U_1)) = \mathbf{D}\, , {\textsc {A/T}}(i_5)={\textsc {DURAT/PRES}}, {\textsc {M}}(i_5)={\textsc {IND}}, U_1, U_2 ],\ \varDelta (r_2)\, (\varDelta (r_3)\, oi(\varDelta (r_2))) )\)

          \(= [oi( i_5 ),\ (i_5 \in {\textsc {be-prop}}^{\prime }),\, ({\textsc {be-prop}}(i_2, i_4) \in i_5), dd(i_2) = \mathbf{D}\, , {\textsc {A/T}}(i_5)={\textsc {DURAT/PRES}},\)

          \({\textsc {M}}(i_5)={\textsc {IND}}, [oi(i_2), (i_2 \in {\textsc {son}}^{\prime }), {\textsc {APPRT}}(i_2)=i_1, {\textsc {NUM}}(i_2)={\textsc {SG}}, {\textsc {HUMAN}}(i_2)=+, [oi( i_1),\)

          \((i_1 \equiv i_{they})] ], (\lambda \ y\, . [oi(i_4),\ (i_4 \in {\textsc {smart}}^{\prime }), ({\textsc {smart}}(y, i_3) \in i_4), {\textsc {MAGN}}(i_4) = i_3, [oi(i_3),\)

          \( (i_3 \in {\textsc {very}}^{\prime })]]\ oi([oi(i_2), (i_2 \in {\textsc {son}}^{\prime }), {\textsc {APPRT}}(i_2)=i_1, {\textsc {NUM}}(i_2)={\textsc {SG}},\)

          \({\textsc {HUMAN}}(i_2)=+, [oi( i_1), (i_1 \equiv i_{they})] ]) )]\)

          \(= [oi( i_5 ),\ (i_5 \in {\textsc {be-prop}}^{\prime }),\, ({\textsc {be-prop}}(i_2, i_4) \in i_5), dd(i_2) = \mathbf{D}\, , {\textsc {A/T}}(i_5)={\textsc {DURAT/PRES}},\)

          \({\textsc {M}}(i_5)={\textsc {IND}}, [oi(i_2), (i_2 \in {\textsc {son}}^{\prime }), {\textsc {APPRT}}(i_2)=i_1, {\textsc {NUM}}(i_2)={\textsc {SG}}, {\textsc {HUMAN}}(i_2)=+, [oi( i_1),\)

          \( (i_1 \equiv i_{they})] ], [oi(i_4),\ (i_4 \in {\textsc {smart}}^{\prime }), ({\textsc {smart}}(i_2, i_3) \in i_4), {\textsc {MAGN}}(i_4) = i_3, [oi(i_3),\)

          \((i_3 \in {\textsc {very}}^{\prime })]] ]\).

\(\mathbf {5.}\) Translation of the DD-tree \(D_5\) of the sentence

$$\begin{aligned} {\texttt {\textit{I met Nick and Jeff, both from a neighbouring village}}} \end{aligned}$$

shown in Fig. 11.

  1. 1.

    \(\varDelta (r_2) =_{Examples~3,4} [oi( i_0),\ (i_0 \equiv i_{speaker}), {\textsc {HUMAN}}(i_0)=+]\), where \(i_{speaker} = \varXi ( l_{speaker} )\).

  2. 2.

    \(\varDelta (r_8) =_{(4.22)} \varLambda (r_8) =_{(4.5)} ((\lambda \, \xi \, x\, .\, [oi(x), (x \in ({\textsc {jeff}}^{\prime })), {\textsc {NUM}}(x)={\textsc {SG}}, {\textsc {HUMAN}}(x)=+]\)

          \(\varXi )\ \mathbf{newoi})\)

          \( = [oi(i_1), (i_1 \in {\textsc {jeff}}^{\prime }), {\textsc {NUM}}(i_1)={\textsc {SG}}, {\textsc {HUMAN}}(i_1)=+]\).

    Side effect: \(\varXi (l_{jeff}) = i_1\) (see Remark 4).

  3. 3.

    \(\varDelta (r_5) =_{(4.23)} \varLambda (r_5) \circ _{a} \varDelta (r_8)\)

          

          \(\varXi )\ \mathbf{newoi}) \circ _{a} \varDelta (r_8)\)

          

          \([oi(i_1), (i_1 \in {\textsc {jeff}}^{\prime }), {\textsc {NUM}}(i_1)={\textsc {SG}}, {\textsc {HUMAN}}(i_1)=+]\)

          

          \({\textsc {NUM}}(i_1)={\textsc {SG}}, {\textsc {HUMAN}}(i_1)=+]]\).

    Side effect: \(\varXi (l_{nick}) = i_2\).

  4. 4.

    \(\varDelta (r_3) =_{(4.23)} \varLambda (r_3) \circ _{a} \varDelta (r_5)\)

          \( =_{(4.13)} ((\lambda \ \xi \ x\ Z\, .\, [oi( x ),\ {\eqcirc }(x) = oi(Z), Z]\ \varXi )\ \mathbf{newoi}) \circ _{a} \varDelta (r_8)\)

          

          \({\textsc {HUMAN}}(i_2)=+, [oi(i_1), (i_1 \in {\textsc {jeff}}^{\prime }), {\textsc {NUM}}(i_1)={\textsc {SG}}, {\textsc {HUMAN}}(i_1)=+]] ]\)

    Side effect: \(\varXi (l_{both}) = i_3\).

  5. 5.

    \(\varDelta (r_6) =_{Examples~3,4} [oi( i_4),\ (i_4 \equiv i_3)]\).

  6. 6.

    \(\varDelta (r_9) =_{(4.5)} [oi(i_5),\ (i_5 \in {\textsc {neighbouring}}^{\prime })]\).

  7. 7.

    \(\varDelta (r_7) =_{Example~2} [oi(i_6), (i_6 \in {\textsc {village}}^{\prime }), {\textsc {DIST}}(i_6)=i_5, [oi(i_5), (i_5 \in {\textsc {neighbouring}}^{\prime })]]\).

    At the same time, \(\varXi (l_v) = \varXi (r_7) = i_6\) due to the side effect defined by (4.7).

  8. 8.

    \(\varDelta (r_4) =_{(4.23)} \varLambda (r_4) \circ _{a} (\varDelta (r_6), \varDelta (r_7))\)

          \(=_{(4.12)} ((\lambda \ \xi \ x\ U\ Z\, . [oi( x ),\ (x \in {\textsc {be-attr}}^{\prime }),\, ({\textsc {be-attr}}(oi(U),oi(Z)) \in x),\)

          \({\textsc {LOC}}(oi(U)) = oi(Z), dd(oi(U)) = \mathbf{G}\,, dd(oi(Z)) = \mathbf{E}\,, {\textsc {A/T}}(x)={\textsc {DURAT/PAST}},\)

          \({\textsc {M}}(x)={\textsc {IND}}, U, Z]\ \varXi )\ \mathbf{newoi}) \circ _{a} (\varDelta (r_6), \varDelta (r_7))\)

          \(=\lambda \ U\ Z\, . [oi( i_7 ),\ (i_7 \in {\textsc {be-attr}}^{\prime }),\, ({\textsc {be-attr}}(oi(U),oi(Z)) \in i_7), {\textsc {LOC}}(oi(U)) = oi(Z),\)

          \( dd(oi(U)) = \mathbf{G}\,, dd(oi(Z)) = \mathbf{E}\,, {\textsc {A/T}}(i_7)={\textsc {DURAT/PAST}}, {\textsc {M}}(i_7)={\textsc {IND}}, U, Z] \)

          \(\circ _{a} (\varDelta (r_6), \varDelta (r_7))\)

          \(= [oi( i_7 ),\ (i_7 \in {\textsc {be-attr}}^{\prime }),\, ({\textsc {be-attr}}(i_4,i_6) \in i_7), {\textsc {LOC}}(i_4) = i_6, dd(i_4) = \mathbf{G}\,, \)

          \(dd(i_6) = \mathbf{E}\,, {\textsc {A/T}}(i_7)={\textsc {DURAT/PAST}}, {\textsc {M}}(i_7)={\textsc {IND}}, [oi( i_4),\ (i_4 \equiv i_3)],\)

          \([oi(i_6), (i_6 \in {\textsc {village}}^{\prime }), {\textsc {DIST}}(i_6)=i_5, [oi(i_5), (i_5 \in {\textsc {neighbouring}}^{\prime })]] ]\).

  9. 9.

    \(\varDelta (r_1) =_{(4.23)} \varLambda (r_1) \circ _{a} (\varDelta (r_2), \varDelta (r_3), \varDelta (r_4))\)

          \(=_{(4.6)} ((\lambda \ \xi \ x\ U_1\ U_2\ Z\, .\, [oi( x ),\ (x \in {\textsc {meet}}^{\prime }), ({\textsc {meet}}(oi(U_1), oi(U_2)) \in x),\)

          \(dd(oi(U_1)) = \mathbf{D}\, , dd(oi(U_2)) = \mathbf{E}\,, \mathbf{and}(x) = oi(Z), {\textsc {A/T}}(x) = {\textsc {POINT/PAST}},\)

          \({\textsc {M}}(x)={\textsc {IND}}, U_1, U_2, Z]\ \varXi )\ \mathbf{newoi}) \circ _{a} (\varDelta (r_2), \varDelta (r_3), \varDelta (r_4))\)

          \(= ((\lambda \, U_1\ U_2\ Z\, .\, [oi( i_8 ),\ (i_8 \in {\textsc {meet}}^{\prime }), ({\textsc {meet}}(oi(U_1), oi(U_2)) \in i_8), dd(oi(U_1)) = \mathbf{D}\, ,\)

          \(dd(oi(U_2)) = \mathbf{E}\,, \mathbf{and}(i_8) = oi(Z), {\textsc {A/T}}(i_8) = {\textsc {POINT/PAST}}, {\textsc {M}}(i_8)={\textsc {IND}}, U_1, U_2, Z]\)

          \(\circ _{a} (\varDelta (r_2), \varDelta (r_3), \varDelta (r_4))\)

          \(= [oi( i_8 ),\ (i_8 \in {\textsc {meet}}^{\prime }), ({\textsc {meet}}(i_0, i_3) \in i_8), dd(i_0) = \mathbf{D}\, , dd(i_3) = \mathbf{E}\,, \mathbf{and}(i_8) = i_7,\)

          \({\textsc {A/T}}(i_8) = {\textsc {POINT/PAST}}, {\textsc {M}}(i_8)={\textsc {IND}}, [oi( i_0),\ (i_0 \equiv i_{speaker}), {\textsc {HUMAN}}(i_0)=+],\)

          

          \({\textsc {HUMAN}}(i_2)=+, [oi(i_1), (i_1 \in {\textsc {jeff}}^{\prime }), {\textsc {NUM}}(i_1)={\textsc {SG}}, {\textsc {HUMAN}}(i_1)=+]] ], [oi( i_7 ),\)

          \((i_7 \in {\textsc {be-attr}}^{\prime }),\, ({\textsc {be-attr}}(i_4,i_6) \in i_7), {\textsc {LOC}}(i_4) = i_6, dd(i_4) = \mathbf{G}\,, dd(i_6) = \mathbf{E}\,,\)

          \({\textsc {A/T}}(i_7)={\textsc {DURAT/PAST}}, {\textsc {M}}(i_7)={\textsc {IND}}, [oi( i_4), (i_4 \equiv i_3)], [oi(i_6), (i_6 \in {\textsc {village}}^{\prime }),\)

          \({\textsc {DIST}}(i_6)=i_5, [oi(i_5), (i_5 \in {\textsc {neighbouring}}^{\prime })]]] ]\).

\(\mathbf {6.}\) Translation of the DD-tree \(D_6\) of the sentence

$$\begin{aligned}&{\texttt {\textit{Every farmer in the village, having tractors, shares}}}\\&{\texttt {\textit{ them with neighbours}}} \end{aligned}$$

shown in Fig. 13.

  1. 1.

    \(\varDelta (r_{17}) =_{(4.2)} \lambda \ X .\ [oi(X)]\).

  2. 2.

    \(\varDelta (r_{18}) =_{(4.22)} \varLambda (r_{18}) =_{(4.5)} ((\lambda \, \xi \, x\, .\, [oi(x), (x \in {\textsc {tractor}}^{\prime }), {\textsc {NUM}}(x) = {\textsc {PL}},\)

          \({\textsc {ANIM}}(x) = -]\ \varXi ) \ \mathbf{newoi})\)

          \(= [oi(i_9), (i_9 \in {\textsc {tractor}}^{\prime }), {\textsc {NUM}}(i_9) = {\textsc {PL}}, {\textsc {ANIM}}(i_9) = -]\).

    Side effect: \(\varXi (l_t) = i_9\) (see Example (5)).

  3. 3.

    \(\varDelta (r_{14}) =_{(4.25)} \varLambda (r_{14}) \circ _{r 1} (\varDelta (r_{17}),\varDelta (r_{18}))\)

          \(=_{(4.6)} ((\lambda \, \xi \, x\, U_1\, U_2\, .\, [oi(x), (x \in {\textsc {have}}^{\prime }), ({\textsc {have}}(oi(U_1),oi(U_2)) \in x), dd(oi(U_2)) = \mathbf{E}\,, \)

          \({\textsc {A/T}}(x) = {\textsc {PROGR/PRES}}, {\textsc {M}}(x) = {\textsc {IND}}, U_1, U_2]\ \varXi )\ \mathbf{newoi})\) \( \circ _{r 1} (\varDelta (r_{17}),\varDelta (r_{18}))\)

          \( = \lambda \, U_1\, U_2\, .\, [oi(i_{10}), (i_{10} \in {\textsc {have}}^{\prime }), ({\textsc {have}}(oi(U_1),oi(U_2)) \in i_{10}), dd(oi(U_2)) = \mathbf{E}\,, \)

          \({\textsc {A/T}}(i_{10}) = {\textsc {PROGR/PRES}}, {\textsc {M}}(i_{10}) = {\textsc {IND}}, U_1, U_2] \circ _{r 1} (\varDelta (r_{17}),\varDelta (r_{18}))\)

          \(=_{(4.18)} ( \lambda \, U_1\, U_2\, y\, .\, [oi(i_{10}), (i_{10} \in {\textsc {have}}^{\prime }), ({\textsc {have}}(oi(U_1),oi(U_2)) \in i_{10}),\)

          \(dd(oi(U_2)) = \mathbf{E}\,, {\textsc {A/T}}(i_{10}) = {\textsc {PROGR/PRES}}, {\textsc {M}}(i_{10}) = {\textsc {IND}}, U_1, U_2]\ (\varDelta (r_{17})\ y)\ \varDelta (r_{18}) )\)

          \(= \lambda \, y\, .\, [oi(i_{10}), (i_{10} \in {\textsc {have}}^{\prime }), ({\textsc {have}}(y,i_9) \in i_{10}), dd(i_9) = \mathbf{E}\,, {\textsc {A/T}}(i_{10}) = {\textsc {PROGR/PRES}}, \)

          \({\textsc {M}}(i_{10}) = {\textsc {IND}}, [oi(y)], [oi(i_9), (i_9 \in {\textsc {tractor}}^{\prime }), {\textsc {NUM}}(i_9) = {\textsc {PL}}, {\textsc {ANIM}}(i_9) = -] ]\)

  4. 4.

    \(\varDelta (r_{15}) =_{(4.22)} \varLambda (r_{15}) =_{(4.5)} ((\lambda \, \xi \, x\, .\, [oi(x), (x \equiv i_6), (x \in {\textsc {village}}^{\prime }), {\textsc {NUM}}(x) = {\textsc {SG}},\)

          \({\textsc {ANIM}}(x) = -]\ \varXi ) \ \mathbf{newoi})\)

          \(= [oi(i_{11}), (i_{11} \equiv i_6), (i_{11}\in {\textsc {village}}^{\prime }), {\textsc {NUM}}(i_{11}) = {\textsc {SG}}, {\textsc {ANIM}}(i_{11}) = -]\).

  5. 5.

    \(\varDelta (r_{11}) =_{(4.23)} \varLambda (r_{11}) \circ _{a} (\varDelta (r_{14}), \varDelta (r_{15})) \)

          \( =_{(4.13)} ((\lambda \ \xi \ x\ R\ Z . [oi( x ),\ (x \in {\textsc {farmer}}^{\prime }), (R\ x), {\textsc {LOC}}(x) = oi(Z), {\textsc {NUM}}(x) = {\textsc {PL}},\)

          \( {\textsc {HUMAN}}(x) = +, Z]\ \varXi )\ \mathbf{newoi}) \circ _{a} (\varDelta (r_{14}), \varDelta (r_{15}))\)

          \(= \lambda \ R\ Z . [oi( i_{12} ),\ (i_{12} \in {\textsc {farmer}}^{\prime }), (R\ i_{12}), {\textsc {LOC}}(x) = oi(Z), {\textsc {NUM}}(i_{12}) = {\textsc {PL}},\)

          \( {\textsc {HUMAN}}(i_{12}) = +, Z]\ \circ _{a} (\varDelta (r_{14}), \varDelta (r_{15}))\)

          \(= [oi( i_{12} ),\ (i_{12} \in {\textsc {farmer}}^{\prime }), [oi(i_{10}), (i_{10} \in {\textsc {have}}^{\prime }), ({\textsc {have}}(i_{12},i_9) \in i_{10}),\)

          \(dd(i_9) = \mathbf{E}\,, {\textsc {A/T}}(i_{10}) = {\textsc {PROGR/PRES}}, {\textsc {M}}(i_{10}) = {\textsc {IND}}, [oi(i_{12})], [oi(i_9), \)

          \((i_9 \in {\textsc {tractor}}^{\prime }), {\textsc {NUM}}(i_9) = {\textsc {PL}}, {\textsc {ANIM}}(i_9) = -] ], {\textsc {LOC}}(i_{12}) = i_{11}, {\textsc {NUM}}(i_{12}) = {\textsc {PL}},\)

          \({\textsc {HUMAN}}(i_{12}) = +, [oi(i_{11}), (i_{11} \equiv i_6), (i_{11} \in {\textsc {village}}^{\prime }), {\textsc {NUM}}(i_{11}) = {\textsc {SG}}, {\textsc {ANIM}}(i_{11}) = -]]\).

    Side effect: \(\varXi (l_f) = i_{12}\).

  6. 6.

    \(\varDelta (r_{12}) =_{Example~3} = [oi(i_{13}), (i_{13} \equiv i_9)]\).

  7. 7.

    \(\varDelta (r_{16}) = [oi(i_{14}), (i_{14} \equiv i_{12})]\).

  8. 8.

    \(\varDelta (r_{13}) =_{(4.23)} \varLambda (r_{13}) \circ _{a} \varDelta (r_{16}) =_{(4.13)}\)

          \(((\lambda \, \xi \, x\, Z\, .\, [oi(x), (x \in {\textsc {neighbour}}^{\prime }), {\textsc {APPRT}}(x)=oi(Z), {\textsc {NUM}}(x)={\textsc {PL}},{\textsc {HUMAN}}(x)=+, Z]\)

          \(\varXi )\ \mathbf{newoi})\ \circ _{a} \varDelta (r_{16})\)

          \(= \lambda \, Z\, .\, [oi(i_{15}), (i_{15} \in {\textsc {neighbour}}^{\prime }), {\textsc {APPRT}}(i_{15})=oi(Z), {\textsc {NUM}}(i_{15})={\textsc {PL}}, \)

          \({\textsc {HUMAN}}(i_{15})=+, Z] \circ _{a}\ \varDelta (r_{16})\)

          \(= [oi(i_{15}), (i_{15} \in {\textsc {neighbour}}^{\prime }), {\textsc {APPRT}}(i_{15})=i_{14}, {\textsc {NUM}}(i_{15})={\textsc {PL}},{\textsc {HUMAN}}(i_{15})=+, [oi(i_{14}),\)

          \((i_{14} \equiv i_{12})]]\).

  9. 9.

    \(\varDelta (r_{10}) =_{(4.23)} \varLambda (r_{10}) \circ _{a} (\varDelta (r_{11}),\varDelta (r_{12}),\varDelta (r_{13}))\)

          \(=_{(4.6)} ((\lambda \, \xi \, x\, U_1\, U_2\, U_3\, .\, [oi(x), (x \in {\textsc {share}}^{\prime }), ({\textsc {share}}(oi(U_1),oi(U_2),oi(U_3)) \in x),\)

          \(dd(oi(U_1)) = \mathbf{U}\, , dd(oi(U_2)) = \mathbf{E}\,, dd(oi(U_3)) = \mathbf{E}\,, {\textsc {A/T}}(x) = {\textsc {DURAT/PRES}}, \)

          \({\textsc {M}}(x) = {\textsc {IND}}, U_1, U_2, U_3]\ \varXi )\ \mathbf{newoi}) \circ _{a} (\varDelta (r_{11}),\varDelta (r_{12}),\varDelta (r_{13}))\)

          \(= \lambda \, U_1\, U_2\, U_3\, .\, [oi(i_{16}), (i_{16} \in {\textsc {share}}^{\prime }), ({\textsc {share}}(oi(U_1),oi(U_2),oi(U_3)) \in i_{16}),\)

          \(dd(oi(U_1)) = \mathbf{U}\, , dd(oi(U_2)) = \mathbf{E}\,, dd(oi(U_3)) = \mathbf{E}\,, {\textsc {A/T}}(i_{16}) = {\textsc {DURAT/PRES}}, \)

          \({\textsc {M}}(i_{16}) = {\textsc {IND}}, U_1, U_2, U_3]\ \circ _{a} (\varDelta (r_{11}),\varDelta (r_{12}),\varDelta (r_{13}))\)

          \(= [oi(i_{16}), (i_{16} \in {\textsc {share}}^{\prime }), ({\textsc {share}}(i_{12},i_{13},i_{15}) \in i_{16}), dd(i_{12}) = \mathbf{U}\, , dd(i_{13}) = \mathbf{E}\,,\)

          \(dd(i_{15}) = \mathbf{E}\,, {\textsc {A/T}}(i_{16}) = {\textsc {DURAT/PRES}}, {\textsc {M}}(i_{16}) = {\textsc {IND}}, [oi( i_{12} ),\ (i_{12} \in {\textsc {farmer}}^{\prime }), [oi(i_{10}),\)

          \((i_{10} \in {\textsc {have}}^{\prime }), ({\textsc {have}}(i_{12},i_9) \in i_{10}), dd(i_9) = \mathbf{E}\,, {\textsc {A/T}}(i_{10}) = {\textsc {PROGR/PRES}}, {\textsc {M}}(i_{10}) = {\textsc {IND}}, \)

          \([oi(i_{12})], [oi(i_9), (i_9 \in {\textsc {tractor}}^{\prime }), {\textsc {NUM}}(i_9) = {\textsc {PL}}, {\textsc {ANIM}}(i_9) = -] ], {\textsc {LOC}}(i_{12}) = i_{11}, \)

          \({\textsc {NUM}}(i_{12}) = {\textsc {PL}}, {\textsc {HUMAN}}(i_{12}) = +, [oi(i_{11}), (i_{11} \equiv i_6), (i_{11} \in {\textsc {village}}^{\prime }), {\textsc {NUM}}(i_{11}) = {\textsc {SG}},\)

          \({\textsc {ANIM}}(i_{11}) = -]], [oi(i_{13}), (i_{13} \equiv i_9)], [oi(i_{15}), (i_{15} \in {\textsc {neighbour}}^{\prime }), {\textsc {APPRT}}(i_{15})=i_{14},\)

          \({\textsc {NUM}}(i_{14})={\textsc {PL}}, {\textsc {HUMAN}}(i_{14})=+, [oi(i_{14}), (i_{14} \equiv i_{12})]] ]\).

\(\mathbf {7.}\) Translation of the DD-tree \(D_7\) of the sentence

shown in Fig. 15.

  1. 1.

    \(\varDelta (r_{20}) =_{(4.22)} \varLambda (r_{20}) =_{(4.5)} [oi(i_{17}), (i_{17} \equiv i_{nick})]\).

  2. 2.

    \(\varDelta (r_{23}) =_{Examples~3,4} [oi( i_{18}),\ (i_{18} \equiv i_{nick})]\).

  3. 3.

    \(\varDelta (r_{21}) =_{(4.23)} \varLambda (r_{21}) \circ _{a} \varDelta (r_{23}) =_{(4.13)} ((\lambda \, \xi \, x\, Z\, .\, [oi(x), (x \in {\textsc {caterpillar}}^{\prime }),\)

          \({\textsc {APPRT}}(x)=oi(Z), {\textsc {NUM}}(x)={\textsc {SG}},{\textsc {HUMAN}}(x)=-, Z]\ \varXi )\ \mathbf{newoi})\ \circ _{a} \varDelta (r_{23})\)

          \(= \lambda \, Z\, .\, [oi(i_{19}), (i_{19} \in {\textsc {caterpillar}}^{\prime }), {\textsc {APPRT}}(i_{19})=oi(Z), {\textsc {NUM}}(i_{19})={\textsc {SG}}, \)

          \({\textsc {HUMAN}}(i_{19})=-, Z] \circ _{a}\ \varDelta (r_{23})\)

          \(= [oi(i_{19}), (i_{19} \in {\textsc {caterpillar}}^{\prime }), {\textsc {APPRT}}(i_{19})=i_{18}, {\textsc {NUM}}(i_{19})={\textsc {SG}},{\textsc {HUMAN}}(i_{19})=-,\)

          \([oi( i_{18}),\ (i_{18} \equiv i_{nick})]]\).

  4. 4.

    \(\varDelta (r_{22}) =_{(4.22)} \varLambda (r_{22}) =_{(4.5)} [oi(i_{20}), (i_{20} \equiv i_{jeff})]\).

  5. 5.

    \(\varDelta (r_{19}) =_{(4.23)} \varLambda (r_{19}) \circ _{a} (\varDelta (r_{20}),\varDelta (r_{21}),\varDelta (r_{22}))\)

          \(=_{(4.6)} ((\lambda \, \xi \, x\, U_1\, U_2\, U_3\, .\, [oi(x), (x \in {\textsc {share}}^{\prime }), (\sim {\textsc {share}}(oi(U_1),oi(U_2),oi(U_3)) \in x),\)

          \(dd(oi(U_1)) = \mathbf{D}\, , dd(oi(U_2)) = \mathbf{E}\,, dd(oi(U_3)) = \mathbf{D}\, , {\textsc {A/T}}(x) = {\textsc {DURAT/PRES}}, \)

          \({\textsc {M}}(x) = {\textsc {IND}}, U_1, U_2, U_3]\ \varXi )\ \mathbf{newoi}) \circ _{a} (\varDelta (r_{20}),\varDelta (r_{21}),\varDelta (r_{22}))\)

          \(= \lambda \, U_1\, U_2\, U_3\, .\, [oi(i_{21}), (i_{21} \in {\textsc {share}}^{\prime }), (\sim {\textsc {share}}(oi(U_1),oi(U_2),oi(U_3)) \in i_{21}),\)

          \(dd(oi(U_1)) = \mathbf{D}\, , dd(oi(U_2)) = \mathbf{E}\,, dd(oi(U_3)) = \mathbf{D}\, , {\textsc {A/T}}(i_{21}) = {\textsc {DURAT/PRES}}, \)

          \({\textsc {M}}(i_{21}) = {\textsc {IND}}, U_1, U_2, U_3]\ \circ _{a} (\varDelta (r_{20}),\varDelta (r_{21}),\varDelta (r_{22}))\)

          \(= [oi(i_{21}), (i_{21} \in {\textsc {share}}^{\prime }), (\sim {\textsc {share}}(i_{17},i_{19},i_{20}) \in i_{21}), dd(i_{17}) = \mathbf{D}\, , dd(i_{19}) = \mathbf{E}\,,\)

          \(dd(i_{20}) = \mathbf{D}\, , {\textsc {A/T}}(i_{21}) = {\textsc {DURAT/PRES}}, {\textsc {M}}(i_{21}) = {\textsc {IND}}, [oi(i_{17}), (i_{17} \equiv i_{nick})], [oi(i_{19}),\)

          \((i_{19} \in {\textsc {caterpillar}}^{\prime }), {\textsc {APPRT}}(i_{19})=i_{18}, {\textsc {NUM}}(i_{19})={\textsc {SG}},{\textsc {HUMAN}}(i_{19})=-, [oi( i_{18}),\)

          \((i_{18} \equiv i_{nick})]], [oi(i_{20}), (i_{20} \equiv i_{jeff})] ].\)

\(\mathbf {8.}\) Translation of the DD-tree \(D_8\) of the sentence

$$\begin{aligned} {\texttt {\textit{Jackie married a guy rich as Croesus}}} \end{aligned}$$

shown in Fig. 17.

  1. 1.

    \(\varDelta (r_2) =_{(4.22)} \varLambda (r_2) =_{(4.5)} ((\lambda \, \xi \, x\, .\, [oi(x), (x \in ({\textsc {jackie}}^{\prime })), {\textsc {NUM}}(x)={\textsc {SG}},\)

          \({\textsc {HUMAN}}(x)=+]\ \varXi ) \ \mathbf{newoi})\)

          \( = [oi(i_1), (i_1 \in {\textsc {jackie}}^{\prime }), {\textsc {NUM}}(i_1)={\textsc {SG}}, {\textsc {HUMAN}}(i_1)=+]\).

  2. 2.

    \(\varDelta (r_7) =_{(4.22)} \varLambda (r_7) =_{(4.5)} ((\lambda \, \xi \, x\, .\, [oi(x), (x \in ({\textsc {croesus}}^{\prime })), {\textsc {NUM}}(x)={\textsc {SG}},\)

          \({\textsc {HUMAN}}(x)=+]\ \varXi ) \ \mathbf{newoi})\)

          \( = [oi(i_2), (i_2 \in {\textsc {croesus}}^{\prime }), {\textsc {NUM}}(i_2)={\textsc {SG}}, {\textsc {HUMAN}}(i_2)=+]\).

  3. 3.

    \(\varDelta (r_9) = \lambda \, X\, .\, [oi(X)]\).

  4. 4.

    \(\varDelta (r_8) =_{(4.25)} \varLambda (r_8) \circ _{r 1} \varDelta (r_9) \)

          \(=_{(4.14)} ((\lambda \ \xi \, x\, Z\, y\, .\, [oi( x ),\ (x \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(y, oi(Z)) \in x), {\textsc {MAGN}}(x) = oi(Z)]\)

          \(\varXi )\ \mathbf{newoi})\ \circ _{r 1} \varDelta (r_9)\)

          \(= \lambda \, Z\, y\, .\, [oi( i_3 ),\ (i_3 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(y, oi(Z)) \in i_3), {\textsc {MAGN}}(i_3) = oi(Z)]\ \circ _{r 1} \varDelta (r_9) \)

          \(=_{(4.18)} (\lambda \, Z\, y\, Y\, .\, [oi( i_3 ),\ (i_3 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(y, oi(Z)) \in i_2), {\textsc {MAGN}}(i_3) = oi(Z)] \)

          \((\lambda \, X\, .\, [oi(X)]\ Y) )\)

          \(= \lambda \, y\, Y\, .\, [oi( i_3 ),\ (i_3 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(y, Y) \in i_3), {\textsc {MAGN}}(i_3) = Y]\).

  5. 5.

    \(\varDelta (r_6) =_{(4.28)} \varLambda (r_6) \circ _{par_3} (\varDelta (r_7), \varDelta (r_8))\)

          \(=_{(4.11)} ((\lambda \, \xi \, x\, U_1\, U_2\, .\, [oi( x ),\ (x \in {\textsc {be-prop}}^{\prime }),\, ({\textsc {be-prop}}(oi(U_1), oi(U_2)) \in x),\)

          \(dd(oi(U_1)) = \mathbf{D}\, , {\textsc {A/T}}(x)={\textsc {DURAT/PRES}}, {\textsc {M}}(x)={\textsc {IND}}, U_1, U_2 ]\ \varXi )\ \mathbf{newoi})\, \circ _{par_3} (\varDelta (r_7), \varDelta (r_8))\)

          \(= \lambda \, U_1\, U_2\, .\, [oi( i_4),\ (i_4 \in {\textsc {be-prop}}^{\prime }),\, ({\textsc {be-prop}}(oi(U_1), oi(U_2)) \in i_4),\)

          \(dd(oi(U_1)) = \mathbf{D}\, , {\textsc {A/T}}(i_4)={\textsc {DURAT/PRES}}, {\textsc {M}}(i_4)={\textsc {IND}}, U_1, U_2 ]\, \circ _{par_3} (\varDelta (r_7), \varDelta (r_8))\)

          \(=_{(4.21)} (\lambda \, U_1\, U_2\, X\, .\, [oi( i_4 ),\ (i_4 \in {\textsc {be-prop}}^{\prime }),\, ({\textsc {be-prop}}(oi(U_1), oi(U_2)) \in i_4),\)

          \(dd(oi(U_1)) = \mathbf{D}\, , {\textsc {A/T}}(i_4)={\textsc {DURAT/PRES}}, {\textsc {M}}(i_4)={\textsc {IND}}, U_1, U_2]\ \varDelta (r_7) (\varDelta (r_8)\ oi(\varDelta (r_7))\ X) )\)

          \(= \lambda \, X\, .\, [oi( i_4 ),\ (i_4 \in {\textsc {be-prop}}^{\prime }),\, ({\textsc {be-prop}}(i_2, i_3) \in i_4), dd(i_2) = \mathbf{D}\, ,\)

          \({\textsc {A/T}}(i_4)={\textsc {DURAT/PRES}}, {\textsc {M}}(i_4)={\textsc {IND}}, [oi(i_2), (i_2 \in {\textsc {croesus}}^{\prime }), {\textsc {NUM}}(i_2)={\textsc {SG}},\)

          \({\textsc {HUMAN}}(i_2)=+], (\lambda \, y\, Y\, .\, [oi( i_3 ),\ (i_3 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(y, Y) \in i_3),\)

          \({\textsc {MAGN}}(i_3) = Y]\ oi([oi(i_2), (i_2 \in {\textsc {croesus}}^{\prime }), {\textsc {NUM}}(i_2)={\textsc {SG}}, {\textsc {HUMAN}}(i_2)=+])\ X) ]\)

          \(= \lambda \, X\, .\, [oi( i_4 ),\ (i_4 \in {\textsc {be-prop}}^{\prime }),\, ({\textsc {be-prop}}(i_2, i_3) \in i_4), dd(i_2) = \mathbf{D}\, ,\)

          \({\textsc {A/T}}(i_4)={\textsc {DURAT/PRES}}, {\textsc {M}}(i_4)={\textsc {IND}}, [oi(i_2), (i_2 \in {\textsc {croesus}}^{\prime }), {\textsc {NUM}}(i_2)={\textsc {SG}},\)

          \({\textsc {HUMAN}}(i_2)=+], [oi( i_3 ),\ (i_3 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(i_2, X) \in i_3), {\textsc {MAGN}}(i_3) = X] ]\)

  6. 6.

    \(\varDelta (r_5) =_{(4.23)} \varLambda (r_5) \circ _{a} \varDelta (r_6)\)

          \(=_{4.13} ((\lambda \, \xi \, x\, R\, .\, [oi( x ),\ (R\ x) ]\ \varXi )\ \mathbf{newoi})\ \circ _{a} \varDelta (r_6)\)

          \(= (\lambda \ R\, .\, [oi( i_5 ),\ (R\ i_5) ]\ \varDelta (r_6) )\)

          \(= [oi( i_5 ),\ (\lambda \, X\, .\, [oi( i_4 ),\ (i_4 \in {\textsc {be-prop}}^{\prime }),\, ({\textsc {be-prop}}(i_2, i_3) \in i_4), dd(i_2) = \mathbf{D}\, , \)

          \({\textsc {A/T}}(i_4)={\textsc {DURAT/PRES}}, {\textsc {M}}(i_4)={\textsc {IND}}, [oi(i_2), (i_2 \in {\textsc {croesus}}^{\prime }), {\textsc {NUM}}(i_2)={\textsc {SG}}, \)

          \({\textsc {HUMAN}}(i_2)=+], [oi( i_3 ),\ (i_3 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(i_2, X) \in i_3), {\textsc {MAGN}}(i_3) = X] ]\ i_5) ]\)

          \(= [oi( i_5 ),\ [oi( i_4 ),\ (i_4 \in {\textsc {be-prop}}^{\prime }),\, ({\textsc {be-prop}}(i_2, i_3) \in i_4), dd(i_2) = \mathbf{D}\, , \)

          \({\textsc {A/T}}(i_4)={\textsc {DURAT/PRES}}, {\textsc {M}}(i_4)={\textsc {IND}}, [oi(i_2), (i_2 \in {\textsc {croesus}}^{\prime }), {\textsc {NUM}}(i_2)={\textsc {SG}}, \)

          \({\textsc {HUMAN}}(i_2)=+], [oi( i_3 ),\ (i_3 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(i_2, i_5) \in i_3), {\textsc {MAGN}}(i_3) = i_5] ] ]\)

  7. 7.

    \(\varDelta (r_4) =_{(4.23)} \varLambda (r_4)\ \circ _{a}\ \varDelta (r_5)\)

          \(=_{(4.14)} ((\lambda \ \xi \, x\, Z\, y\, .\, [oi( x ),\ (x \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(y, oi(Z)) \in x), {\textsc {MAGN}}(x) = oi(Z), Z]\)

          \(\varXi )\ \mathbf{newoi})\ \circ _{a}\ \varDelta (r_5)\)

          \(= (\lambda \ Z\, y\, .\, [oi( i_6),\ (i_6 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(y, oi(Z)) \in i_6), {\textsc {MAGN}}(i_6) = oi(Z), Z] \varDelta (r_5) )\)

          \(= \lambda \ y\, .\, [oi( i_6 ),\ (i_6 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(y, i_5) \in i_6), {\textsc {MAGN}}(i_6) = i_5, [oi( i_5 ), [oi( i_4 ),\ \)

          \((i_4 \in {\textsc {be-prop}}^{\prime }),\, ({\textsc {be-prop}}(i_2, i_3) \in i_4), dd(i_2) = \mathbf{D}\, , {\textsc {A/T}}(i_4)={\textsc {DURAT/PRES}},\)

          \( {\textsc {M}}(i_4)={\textsc {IND}}, [oi(i_2), (i_2 \in {\textsc {croesus}}^{\prime }), {\textsc {NUM}}(i_2)={\textsc {SG}}, {\textsc {HUMAN}}(i_2)=+], [oi( i_3 ),\)

          \((i_3 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(i_2, i_5) \in i_3), {\textsc {MAGN}}(i_3) = i_5] ] ] ]\).

  8. 8.

    \(\varDelta (r_3) =_{(4.23)} \varLambda (r_3)\ \circ _{a}\ \varDelta (r_4)\)

          \(=_{(4.13)} ((\lambda \ \xi \ x\ Y\, . [oi( x ),\ (x \in {\textsc {guy}}^{\prime }), (Y\ x), {\textsc {NUM}}(x)={\textsc {SG}}, {\textsc {HUMAN}}(x)=+ ]\ \varXi )\ \mathbf{newoi})\)

          \(\circ _{a}\ \varDelta (r_4)\)

          \(= ( \lambda \ Y\, . [oi( i_7 ),\ (i_7 \in {\textsc {guy}}^{\prime }), (Y\ i_7), {\textsc {NUM}}(i_7)={\textsc {SG}}, {\textsc {HUMAN}}(i_7)=+ ]\ \varDelta (r_4) )\)

          \(= [oi( i_7 ),\ (i_7 \in {\textsc {guy}}^{\prime }), [oi( i_6 ),\ (i_6 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(i_7, i_5) \in i_6), {\textsc {MAGN}}(i_6) = i_5, [oi( i_5 ),\)

          \([oi( i_4 ),\ (i_4 \in {\textsc {be-prop}}^{\prime }),\, ({\textsc {be-prop}}(i_2, i_3) \in i_4), dd(i_2) = \mathbf{D}\, , {\textsc {A/T}}(i_4)={\textsc {DURAT/PRES}},\)

          \({\textsc {M}}(i_4)={\textsc {IND}}, [oi(i_2), (i_2 \in {\textsc {croesus}}^{\prime }), {\textsc {NUM}}(i_2)={\textsc {SG}}, {\textsc {HUMAN}}(i_2)=+], [oi( i_3 ),\)

          \((i_3 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(i_2, i_5) \in i_3), {\textsc {MAGN}}(i_3) = i_5] ] ] ], {\textsc {NUM}}(i_7)={\textsc {SG}}, {\textsc {HUMAN}}(i_7)=+ ]\).

  9. 9.

    \(\varDelta (r_1) =_{(4.23)} \varLambda (r_1) \circ _{a} (\varDelta (r_2),\varDelta (r_3))\)

          \(=_{(4.6)} ((\lambda \, \xi \, x\, U_1\, U_2\, .\, [oi(x), (x \in {\textsc {marry}}^{\prime }), ({\textsc {marry}}(oi(U_1),oi(U_2)) \in x),\)

          \(dd(oi(U_1)) = \mathbf{D}\, , dd(oi(U_2)) = \mathbf{E}\,, {\textsc {A/T}}(x) = {\textsc {POINT/PAST}}, {\textsc {M}}(x) = {\textsc {IND}}, U_1, U_2] \varXi )\ \mathbf{newoi})\)

          \(\circ _{a} (\varDelta (r_2),\varDelta (r_3))\)

          \(= \lambda \, U_1\, U_2\, .\, [oi(i_8), (i_8 \in {\textsc {marry}}^{\prime }), ({\textsc {marry}}(oi(U_1),oi(U_2)) \in i_8), dd(oi(U_1)) = \mathbf{D}\, ,\)

          \(dd(oi(U_2)) = \mathbf{E}\,, {\textsc {A/T}}(i_8) = {\textsc {POINT/PAST}}, {\textsc {M}}(i_8) = {\textsc {IND}}, U_1, U_2]\ \circ _{a} (\varDelta (r_2),\varDelta (r_3))\)

          \(= [oi(i_8), (i_8 \in {\textsc {marry}}^{\prime }), ({\textsc {marry}}(i_1,i_7) \in i_8), dd(i_1) = \mathbf{D}\, , dd(i_7) = \mathbf{E}\,,\)

          \({\textsc {A/T}}(i_8) = {\textsc {POINT/PAST}}, {\textsc {M}}(i_8) = {\textsc {IND}}, [oi(i_1), (i_1 \in {\textsc {jackie}}^{\prime }), {\textsc {NUM}}(i_1)={\textsc {SG}},\)

          \({\textsc {HUMAN}}(i_1)=+], [oi( i_7 ),\ (i_7 \in {\textsc {guy}}^{\prime }), [oi( i_6 ),\ (i_6 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(i_7, i_5) \in i_6),\)

          \({\textsc {MAGN}}(i_6) = i_5, [oi( i_5 ),\ [oi( i_4 ),\ (i_4 \in {\textsc {be-prop}}^{\prime }),\, ({\textsc {be-prop}}(i_2, i_3) \in i_4), dd(i_2) = \mathbf{D}\, , \)

          \({\textsc {A/T}}(i_4)={\textsc {DURAT/PRES}}, {\textsc {M}}(i_4)={\textsc {IND}}, [oi(i_2), (i_2 \in {\textsc {croesus}}^{\prime }), {\textsc {NUM}}(i_2)={\textsc {SG}}, \)

          \({\textsc {HUMAN}}(i_2)=+], [oi( i_3 ),\ (i_3 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(i_2, i_5) \in i_3), {\textsc {MAGN}}(i_3) = i_5] ] ] ],\)

          \({\textsc {NUM}}(i_7)={\textsc {SG}}, {\textsc {HUMAN}}(i_7)=+ ] ]\).

\(\mathbf {9.}\) Translation of the DD-tree \(D_9\) of the sentence

$$\begin{aligned} {\texttt {\textit{Jackie married a guy more rich than Croesus}}} \end{aligned}$$

shown in Fig. 19.

  1. 1.

    \(\varDelta (r_2) =_{(4.22)} \varLambda (r_2) =_{(4.5)} ((\lambda \, \xi \, x\, .\, [oi(x), (x \in ({\textsc {jackie}}^{\prime })), {\textsc {NUM}}(x)={\textsc {SG}},\)

          \({\textsc {HUMAN}}(x)=+]\ \varXi ) \ \mathbf{newoi})\)

          \( = [oi(i_1), (i_1 \in {\textsc {jackie}}^{\prime }), {\textsc {NUM}}(i_1)={\textsc {SG}}, {\textsc {HUMAN}}(i_1)=+]\).

  2. 2.

    \(\varDelta (r_7) =_{(4.2)} \lambda \, X\, .\, [oi(X)]\).

  3. 3.

    \(\varDelta (r_{10}) =_{(4.22)} \varLambda (r_{10}) =_{(4.5)} ((\lambda \, \xi \, x\, .\, [oi(x), (x \in ({\textsc {croesus}}^{\prime })), {\textsc {NUM}}(x)={\textsc {SG}},\)

          \({\textsc {HUMAN}}(x)=+]\ \varXi ) \ \mathbf{newoi})\)

          \( = [oi(i_2), (i_2 \in {\textsc {croesus}}^{\prime }), {\textsc {NUM}}(i_2)={\textsc {SG}}, {\textsc {HUMAN}}(i_2)=+]\).

  4. 4.

    \(\varDelta (r_{12}) = \lambda \, X\, .\, [oi(X)]\).

  5. 5.

    \(\varDelta (r_{11}) =_{(4.25)} \varLambda (r_{11}) \circ _{r 1} \varDelta (r_{12}) \)

          \(=_{(4.14)} ((\lambda \ \xi \, x\, Z\, y\, .\, [oi( x ),\ (x \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(y, oi(Z)) \in x), {\textsc {MAGN}}(x) = oi(Z)]\)

          \(\varXi )\ \mathbf{newoi})\ \circ _{r 1} \varDelta (r_{12})\)

          \(= \lambda \, Z\, y\, .\, [oi( i_3 ),\ (i_3 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(y, oi(Z)) \in i_3), {\textsc {MAGN}}(i_3) = oi(Z)]\ \circ _{r 1} \varDelta (r_{12}) \)

          \(=_{(4.18)} (\lambda \, Z\, y\, Y\, .\, [oi( i_3 ),\ (i_3 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(y, oi(Z)) \in i_2), {\textsc {MAGN}}(i_3) = oi(Z)] \)

          \((\lambda \, X\, .\, [oi(X)]\ Y) )\)

          \(= \lambda \, y\, Y\, .\, [oi( i_3 ),\ (i_3 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(y, Y) \in i_3), {\textsc {MAGN}}(i_3) = Y]\).

  6. 6.

    \(\varDelta (r_9) =_{(4.28)} \varLambda (r_9) \circ _{par_3} (\varDelta (r_{10}), \varDelta (r_{11}))\)

          \(=_{(4.11)} ((\lambda \, \xi \, x\, U_1\, U_2\, .\, [oi( x ),\ (x \in {\textsc {be-prop}}^{\prime }),\, ({\textsc {be-prop}}(oi(U_1), oi(U_2)) \in x),\)

          \(dd(oi(U_1)) = \mathbf{D}\, , {\textsc {A/T}}(x)={\textsc {DURAT/PRES}}, {\textsc {M}}(x)={\textsc {IND}}, U_1, U_2 ]\ \varXi )\ \mathbf{newoi})\, \circ _{par_3} (\varDelta (r_{10}), \varDelta (r_{11}))\)

          \(= \lambda \, U_1\, U_2\, .\, [oi( i_ 4),\ (i_4 \in {\textsc {be-prop}}^{\prime }),\, ({\textsc {be-prop}}(oi(U_1), oi(U_2)) \in i_4),\)

          \(dd(oi(U_1)) = \mathbf{D}\, , {\textsc {A/T}}(i_4)={\textsc {DURAT/PRES}}, {\textsc {M}}(i_4)={\textsc {IND}}, U_1, U_2 ]\, \circ _{par_3} (\varDelta (r_{10}), \varDelta (r_{11}))\)

    \(=_{(4.21)} (\lambda \, U_1\, U_2\, X\, .\, [oi( i_4 ),\ (i_4 \in {\textsc {be-prop}}^{\prime }),\, ({\textsc {be-prop}}(oi(U_1), oi(U_2)) \in i_4),\)

          \(dd(oi(U_1)) = \mathbf{D}\, , {\textsc {A/T}}(i_4)={\textsc {DURAT/PRES}}, {\textsc {M}}(i_4)={\textsc {IND}}, U_1, U_2]\ \varDelta (r_{10})\ (\varDelta (r_{11})\ oi(\varDelta (r_{10}))\ X) )\)

          \(= \lambda \, X\, .\, [oi( i_4 ),\ (i_4 \in {\textsc {be-prop}}^{\prime }),\, ({\textsc {be-prop}}(i_2, i_3) \in i_4), dd(i_2) = \mathbf{D}\, ,\)

          \({\textsc {A/T}}(i_4)={\textsc {DURAT/PRES}}, {\textsc {M}}(i_4)={\textsc {IND}}, [oi(i_2), (i_2 \in {\textsc {croesus}}^{\prime }), {\textsc {NUM}}(i_2)={\textsc {SG}},\)

          \({\textsc {HUMAN}}(i_2)=+], (\lambda \, y\, Y\, .\, [oi( i_3 ),\ (i_3 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(y, Y) \in i_3),\)

          \({\textsc {MAGN}}(i_3) = Y]\ oi([oi(i_2), (i_2 \in {\textsc {croesus}}^{\prime }), {\textsc {NUM}}(i_2)={\textsc {SG}}, {\textsc {HUMAN}}(i_2)=+])\ X) ]\)

          \(= \lambda \, X\, .\, [oi( i_4 ),\ (i_4 \in {\textsc {be-prop}}^{\prime }),\, ({\textsc {be-prop}}(i_2, i_3) \in i_4), dd(i_2) = \mathbf{D}\, ,\)

          \({\textsc {A/T}}(i_4)={\textsc {DURAT/PRES}}, {\textsc {M}}(i_4)={\textsc {IND}}, [oi(i_2), (i_2 \in {\textsc {croesus}}^{\prime }), {\textsc {NUM}}(i_2)={\textsc {SG}},\)

          \({\textsc {HUMAN}}(i_2)=+], [oi( i_3 ),\ (i_3 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(i_2, X) \in i_3), {\textsc {MAGN}}(i_3) = X] ]\)

  7. 7.

    \(\varDelta (r_8) =_{(4.23)} \varLambda (r_8) \circ _{a} \varDelta (r_9)\)

          \(=_{4.13} ((\lambda \, \xi \, x\, R\, .\, [oi( x ),\ (R\ x) ]\ \varXi )\ \mathbf{newoi})\ \circ _{a} \varDelta (r_9)\)

          \(= (\lambda \ R\, .\, [oi( i_5 ),\ (R\ i_5) ]\ \varDelta (r_9) )\)

          \(= [oi( i_5 ),\ (\lambda \, X\, .\, [oi( i_4 ),\ (i_4 \in {\textsc {be-prop}}^{\prime }),\, ({\textsc {be-prop}}(i_2, i_3) \in i_4), dd(i_2) = \mathbf{D}\, , \)

          \({\textsc {A/T}}(i_4)={\textsc {DURAT/PRES}}, {\textsc {M}}(i_4)={\textsc {IND}}, [oi(i_2), (i_2 \in {\textsc {croesus}}^{\prime }), {\textsc {NUM}}(i_2)={\textsc {SG}}, \)

          \({\textsc {HUMAN}}(i_2)=+], [oi( i_3 ),\ (i_3 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(i_2, X) \in i_3), {\textsc {MAGN}}(i_3) = X] ]\ i_5) ]\)

          \(= [oi( i_5 ),\ [oi( i_4 ),\ (i_4 \in {\textsc {be-prop}}^{\prime }),\, ({\textsc {be-prop}}(i_2, i_3) \in i_4), dd(i_2) = \mathbf{D}\, , \)

          \({\textsc {A/T}}(i_4)={\textsc {DURAT/PRES}}, {\textsc {M}}(i_4)={\textsc {IND}}, [oi(i_2), (i_2 \in {\textsc {croesus}}^{\prime }), {\textsc {NUM}}(i_2)={\textsc {SG}}, \)

          \({\textsc {HUMAN}}(i_2)=+], [oi( i_3 ),\ (i_3 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(i_2, i_5) \in i_3), {\textsc {MAGN}}(i_3) = i_5] ] ]\)

  8. 8.

    \(\varDelta (r_6) =_{(4.25)} \varLambda (r_6) \circ _{r 1} (\varDelta (r_7),\varDelta (r_8))\)

          \(=_{(4.6)} ((\lambda \, \xi \, x\, U_1\, U_2\, .\, [oi(x), (x \in ({>})^{\prime }), (({>})(oi(U_1), oi(U_2)) \in x), U_1, U_2]\ \varXi ) \mathbf{newoi}) \)

          \(\circ _{r 1} (\varDelta (r_7),\varDelta (r_8))\)

          \(= \lambda \, U_1\, U_2\, .\, [oi(i_6), (i_6 \in ({>})^{\prime }), (({>})(oi(U_1), oi(U_2)) \in i_6), U_1, U_2]\ \circ _{r 1} (\varDelta (r_7),\varDelta (r_8))\)

          \(=_{(4.18)} (\lambda \, U_1\, U_2\, Y\, .\, [oi(i_6), (i_6 \in ({>})^{\prime }), (({>})(oi(U_1), oi(U_2)) \in i_6), U_1, U_2] (\varDelta (r_7)\ Y)\)

          \([oi( i_5 ),\ [oi( i_4 ),\ (i_4 \in {\textsc {be-prop}}^{\prime }), ({\textsc {be-prop}}(i_2, i_3) \in i_4), dd(i_2) = \mathbf{D}\, , \)

          \({\textsc {A/T}}(i_4)={\textsc {DURAT/PRES}}, {\textsc {M}}(i_4)={\textsc {IND}}, [oi(i_2), (i_2 \in {\textsc {croesus}}^{\prime }), {\textsc {NUM}}(i_2)={\textsc {SG}}, \)

          \({\textsc {HUMAN}}(i_2)=+], [oi( i_3 ),\ (i_3 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(i_2, i_5) \in i_3), {\textsc {MAGN}}(i_3) = i_5] ] ])\)

          \(= \lambda \, Y\, .\, [oi(i_6), (i_6 \in {>}^{\prime }), (({>})(Y, i_5) \in i_6), [oi(Y)], [oi( i_5 ), [oi( i_4 ),\ (i_4 \in {\textsc {be-prop}}^{\prime }), \)

          \(({\textsc {be-prop}}(i_2, i_3) \in i_4), dd(i_2) = \mathbf{D}\, , {\textsc {A/T}}(i_4)={\textsc {DURAT/PRES}}, {\textsc {M}}(i_4)={\textsc {IND}}, [oi(i_2), \)

          \( (i_2 \in {\textsc {croesus}}^{\prime }), {\textsc {NUM}}(i_2)={\textsc {SG}}, {\textsc {HUMAN}}(i_2)=+], [oi( i_3 ), (i_3 \in {\textsc {rich}}^{\prime }), \)

          \(({\textsc {rich}}(i_2, i_5) \in i_3), {\textsc {MAGN}}(i_3) = i_5] ] ] ]\).

  9. 9.

    \(\varDelta (r_5) =_{(4.23)} \varLambda (r_5) \circ _{a} \varDelta (r_6)\)

          \(=_{(4.13)} ((\lambda \ \xi \ x\ R\, .\, [oi( x ),\ (R\ x) ]\ \varXi )\ \mathbf{newoi})\ \circ _{a} \varDelta (r_6)\)

          \(= (\lambda \ R\, .\, [oi( i_7 ),\ (R\ i_7) ]\ \varDelta (r_6) )\)

          \(= [oi( i_7 ),\ [oi(i_6), (i_6 \in ({>})^{\prime }), (({>})(i_7, i_5) \in i_6), [oi(i_7)], [oi( i_5 ), [oi( i_4 ),\ (i_4 \in {\textsc {be-prop}}^{\prime }),\)

          \(({\textsc {be-prop}}(i_2, i_3) \in i_4), dd(i_2) = \mathbf{D}\, , {\textsc {A/T}}(i_4)={\textsc {DURAT/PRES}}, {\textsc {M}}(i_4)={\textsc {IND}}, [oi(i_2), \)

          \((i_2 \in {\textsc {croesus}}^{\prime }), {\textsc {NUM}}(i_2)={\textsc {SG}}, {\textsc {HUMAN}}(i_2)=+], [oi( i_3 ), (i_3 \in {\textsc {rich}}^{\prime }), \)

          \( ({\textsc {rich}}(i_2, i_5) \in i_3), {\textsc {MAGN}}(i_3) = i_5] ] ] ] ]\).

  10. 10.

    \(\varDelta (r_4) =_{(4.23)} \varLambda (r_4)\ \circ _{a}\ \varDelta (r_5)\)

          \(=_{(4.14)} ((\lambda \ \xi \, x\, Z\, y\, .\, [oi( x ),\ (x \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(y, oi(Z)) \in x), {\textsc {MAGN}}(x) = oi(Z), Z]\)

          \(\varXi )\ \mathbf{newoi})\ \circ _{a}\ \varDelta (r_5)\)

          \(= (\lambda \ Z\, y\, .\, [oi( i_8 ),\ (i_8 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(y, oi(Z)) \in i_8), {\textsc {MAGN}}(i_8) = oi(Z), Z] \varDelta (r_5) )\)

          \(= \lambda \ y\, .\, [oi( i_8 ),\ (i_8 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(y, i_7) \in i_8), {\textsc {MAGN}}(i_8) = i_7, [oi( i_7 ),\ [oi(i_6), \)

          \((i_6 \in ({>})^{\prime }), (({>})(i_7, i_5) \in i_6), [oi(i_7)], [oi( i_5 ), [oi( i_4 ),\ (i_4 \in {\textsc {be-prop}}^{\prime }),\)

          \(({\textsc {be-prop}}(i_2, i_3) \in i_4), dd(i_2) = \mathbf{D}\, , {\textsc {A/T}}(i_4)={\textsc {DURAT/PRES}}, {\textsc {M}}(i_4)={\textsc {IND}},\)

          \([oi(i_2), (i_2 \in {\textsc {croesus}}^{\prime }), {\textsc {NUM}}(i_2)={\textsc {SG}}, {\textsc {HUMAN}}(i_2)=+], [oi( i_3 ), (i_3 \in {\textsc {rich}}^{\prime }),\)

          \(({\textsc {rich}}(i_2, i_5) \in i_3), {\textsc {MAGN}}(i_3) = i_5] ] ] ] ] ]\).

  11. 11.

    \(\varDelta (r_3) =_{(4.23)} \varLambda (r_3)\ \circ _{a}\ \varDelta (r_4)\)

          \(=_{(4.13)} ((\lambda \ \xi \ x\ Y\, . [oi( x ),\ (x \in {\textsc {guy}}^{\prime }), (Y\ x), {\textsc {NUM}}(x)={\textsc {SG}}, {\textsc {HUMAN}}(x)=+ ]\ \varXi )\ \mathbf{newoi})\)

          \(\circ _{a}\ \varDelta (r_4)\)

          \(= ( \lambda \ Y\, . [oi( i_9 ),\ (i_9 \in {\textsc {guy}}^{\prime }), (Y\ i_9), {\textsc {NUM}}(i_9)={\textsc {SG}}, {\textsc {HUMAN}}(i_9)=+ ]\ \varDelta (r_4) )\)

          \(= [oi( i_9 ),\ (i_9 \in {\textsc {guy}}^{\prime }), [oi( i_8 ),\ (i_8 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(i_9, i_7) \in i_8), {\textsc {MAGN}}(i_8) = i_7, [oi( i_7 ),\)

          \([oi(i_6), (i_6 \in ({>})^{\prime }), (({>})(i_7, i_5) \in i_6), [oi(i_7)], [oi( i_5 ), [oi( i_4 ),\ (i_4 \in {\textsc {be-prop}}^{\prime }),\)

    \(({\textsc {be-prop}}(i_2, i_3) \in i_4), dd(i_2) = \mathbf{D}\, , {\textsc {A/T}}(i_4)={\textsc {DURAT/PRES}}, {\textsc {M}}(i_4)={\textsc {IND}}, [oi(i_2),\)

    \((i_2 \in {\textsc {croesus}}^{\prime }), {\textsc {NUM}}(i_2)={\textsc {SG}}, {\textsc {HUMAN}}(i_2)=+], [oi( i_3 ), (i_3 \in {\textsc {rich}}^{\prime }),\)

          \(({\textsc {rich}}(i_2, i_5) \in i_3), {\textsc {MAGN}}(i_3) = i_5] ] ] ] ] ], {\textsc {NUM}}(i_9)={\textsc {SG}}, {\textsc {HUMAN}}(i_9)=+ ]\).

  12. 12.

    \(\varDelta (r_1) =_{(4.23)} \varLambda (r_1) \circ _{a} (\varDelta (r_2),\varDelta (r_3))\)

          \(=_{(4.6)} ((\lambda \, \xi \, x\, U_1\, U_2\, .\, [oi(x), (x \in {\textsc {marry}}^{\prime }), ({\textsc {marry}}(oi(U_1),oi(U_2)) \in x),\)

          \(dd(oi(U_1)) = \mathbf{D}\, , dd(oi(U_2)) = \mathbf{E}\,, {\textsc {A/T}}(x) = {\textsc {POINT/PAST}}, {\textsc {M}}(x) = {\textsc {IND}}, U_1, U_2]\ \varXi ) \mathbf{newoi})\)

          \(\circ _{a} (\varDelta (r_2),\varDelta (r_3))\)

          \(= \lambda \, U_1\, U_2\, .\, [oi(i_{10}), (i_{10} \in {\textsc {marry}}^{\prime }), ({\textsc {marry}}(oi(U_1),oi(U_2)) \in i_{10}), dd(oi(U_1)) = \mathbf{D}\, ,\)

          \(dd(oi(U_2)) = \mathbf{E}\,, {\textsc {A/T}}(i_{10}) = {\textsc {POINT/PAST}}, {\textsc {M}}(i_{10}) = {\textsc {IND}}, U_1, U_2]\ \circ _{a} (\varDelta (r_2),\varDelta (r_3))\)

          \(= [oi(i_{10}), (i_{10} \in {\textsc {marry}}^{\prime }), ({\textsc {marry}}(i_1,i_9) \in i_{10}), dd(i_1) = \mathbf{D}\, , dd(i_9) = \mathbf{E}\,,\)

          \({\textsc {A/T}}(i_{10}) = {\textsc {POINT/PAST}}, {\textsc {M}}(i_{10}) = {\textsc {IND}}, [oi(i_1), (i_1 \in {\textsc {jackie}}^{\prime }), {\textsc {NUM}}(i_1)={\textsc {SG}},\)

          \({\textsc {HUMAN}}(i_1)=+], [oi( i_9 ),\ (i_9 \in {\textsc {guy}}^{\prime }), [oi( i_8 ),\ (i_8 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(i_9, i_7) \in i_8), \)

          \({\textsc {MAGN}}(i_8) = i_7, [oi( i_7 ), [oi(i_6), (i_6 \in ({>})^{\prime }), (({>})(i_7, i_5) \in i_6), [oi(i_7)], [oi( i_5 ), [oi( i_4 ),\)

          \((i_4 \in {\textsc {be-prop}}^{\prime }), ({\textsc {be-prop}}(i_2, i_3) \in i_4), dd(i_2) = \mathbf{D}\, , {\textsc {A/T}}(i_4)={\textsc {DURAT/PRES}},\)

          \({\textsc {M}}(i_4)={\textsc {IND}}, [oi(i_2), (i_2 \in {\textsc {croesus}}^{\prime }), {\textsc {NUM}}(i_2)={\textsc {SG}}, {\textsc {HUMAN}}(i_2)=+], [oi( i_3 ),\)

          \((i_3 \in {\textsc {rich}}^{\prime }), ({\textsc {rich}}(i_2, i_5) \in i_3), {\textsc {MAGN}}(i_3) = i_5] ] ] ] ] ], {\textsc {NUM}}(i_9)={\textsc {SG}}, {\textsc {HUMAN}}(i_9)=+ ] ]\).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dikovsky, A. Linguistic\(\leftrightarrow \)Rational Agents’ Semantics. J of Log Lang and Inf 26, 341–437 (2017). https://doi.org/10.1007/s10849-017-9258-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10849-017-9258-y

Keywords

Navigation