Skip to main content
Log in

Physicochemical characterization of finasteride:PEG 6000 and finasteride:Kollidon K25 solid dispersions, and finasteride: β-cyclodextrin inclusion complexes

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Finasteride is a practically insoluble in water drug that belongs to the Class II of the BCS (poor solubility and high permeability). Solid dispersions are solid products consisting of at least two different components, generally a hydrophilic matrix and a hydrophobic drug. Solid dispersions are a successful strategy to improve drug release of poorly water-soluble drugs such as finasteride. Natural cyclodextrins are doughnut-shaped molecules with an internal hydrophobic cavity and a hydrophilic external surface. The lipophilic cavity enables cyclodextrins to form non-covalent inclusion complexes with a wide variety of poorly water-soluble drugs such as finasteride. The aim of this study was to investigate the formation of finasteride:PEG 6000 and finasteride:Kollidon K25 solid dispersions and finasteride:β-cyclodextrin inclusion complexes by solvent evaporation method using a mixture of water:ethanol (1:1). The formation of finasteride:PEG 6000 and finasteride:Kollidon K25 solid dispersions and finasteride:β-cyclodextrin inclusion complexes was investigated and characterized by differential scanning calorimetry (DSC), infrared (IR) spectroscopy, and dissolution studies from capsules containing a quantity equivalent to 5 mg of finasteride. The DSC thermograms revealed the transformation of finasteride into the amorphous state in solid dispersions with PEG 6000 and Kollidon K25, and in inclusion complexes with β-cyclodextrin. The IR spectra demonstrated molecular interaction in solid dispersions of finasteride with PEG 6000, and in inclusion complexes with β-cyclodextrin. Dissolution rate of solid dispersions and inclusion complexes was significantly greater than that of corresponding physical mixtures and pure drug, indicating that the formation of solid dispersions and inclusion complexes increased the solubility of the poorly soluble drug, finasteride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chawla, G., Gupta, P., Koradia, V., Bansal, A.K.: Gastroretention a mean to address regional variability in intestinal drug absorption. J. Pharm. Tech. 27, 50–68 (2003)

    Google Scholar 

  2. Vippagunta, S.R., Wang, Z., Hornung, S., Krill, S.L.: Factors affecting the formation of eutectic solid dispersions and their dissolution behaviour. J. Pharm. Sci. 96(2), 294–304 (2006)

    Article  Google Scholar 

  3. Maynard R.L.: The Index Merck (monograph number: 4113), 13th edn, pp. 721–722. Merck, New York (2001)

  4. Kai, T., Akiyama, Y., Nomura, S., Sato, M.: Oral absorption improvement of poorly soluble drug using solid dispersion technique. Chem. Pharm. Bull. 44, 568–571 (1996)

    CAS  Google Scholar 

  5. Rajewski, R.A., Stella, V.J.: Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery. J. Pharm. Sci. 85, 1142–1169 (1996)

    Article  CAS  Google Scholar 

  6. van Drooge, D.J., Hinrichs, W.L.J., Visser, M.R., Frijlink, H.W.: Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques. Int. J. Pharm. 310(1–2), 220–229 (2006)

    Google Scholar 

  7. Karata, A., Yüksel, N., Özkan, Y., Sava, A., Özkan, S.A., Baykara, T.: Improved solubility and dissolution rate of piroxicam using gelucire 44/14 and labrosol. II Farmaco 60(9), 777–782 (2005)

    Article  Google Scholar 

  8. Urbanetz, N.A.: Stabilization of solid dispersions of nimodipine, polyethylene glycol 2000. Eur. J. Pharm. Sci. 28(1–2), 67–76 (2006)

    Article  CAS  Google Scholar 

  9. Leuner, C., Dressman, J.: Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 50(1), 47–60 (2000)

    Article  CAS  Google Scholar 

  10. Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1998)

    Article  CAS  Google Scholar 

  11. Rawat, S., Jain, S.K.: Solubility enhancement of celecoxib using β-cyclodextrin inclusion complexes. Eur. J. Pharm. Biopharm. 57, 263–267 (2004)

    Article  CAS  Google Scholar 

  12. Rowe R.C., Sheskey P.J., Weller P.J.: Handbook of Pharmaceutical Excipients, 4th edn, pp. 186–190. American Pharmaceutical Association, Washington:DC (2003)

  13. Emara, L.H., Badr, R.M., Elbary, A.A.: Improving the dissolution of nifedipine using solid dispersions and solubilizers. Drug Dev. Ind. Pharm. 28(7), 795–807 (2002)

    Article  CAS  Google Scholar 

  14. Chowdary, K.P.R., Rao, S.S.: Investigation of dissolution enhancement of itroconazole by solid dispersion in superdisintegrants. Drug Dev. Ind. Pharm. 26(11), 1207–1211 (2000)

    Article  CAS  Google Scholar 

  15. Torre, P., Torrado, S., Torrado, S.: Preparation, dissolution and characterization of praziquantel solid dispersions. Chem. Pharm. Bull. 47(11), 1629–1633 (1999)

    Google Scholar 

  16. Chen, R., Maya, T., Hoshi, N., Ogura, T., Okamoto, H., Danjo, K.: Improved dissolution of an insoluble drug using a 4-fluid nozzle spray-drying technique. Chem. Pharm. Bull. 52(9), 1066–1070 (2004)

    Article  CAS  Google Scholar 

  17. Chutimaworapan, S., Ritthidej, G.C., Yonemochi, E., Oguchi, T., Yamamoto, K.: Effect of water-soluble carriers on dissolution characteristics of nifedipine solid dispersions. Drug Dev. Ind. Pharm. 26(11), 1141–1150 (2000)

    Article  CAS  Google Scholar 

  18. Sinha, V.R., Anitha, R., Ghosh, S., Kumria, S., Bhinge, J.R., Kumar, M.: Physicochemical characterization and in vitro dissolution behaviour of celecoxib-β-cyclodextrin inclusion complexes. Acta Pharm. 57, 47–60 (2007)

    Article  CAS  Google Scholar 

  19. Choi, H.G., Kim, D.D., Jun, H.W., Yoo, B.K., Yong, C.S.: Improvement of dissolution and bioavailability of nitrendipine by inclusion in hydroxypropil-β-cyclodextrin. Drug Dev. Ind. Pharm. 29(10), 1085–1094 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Tecnimede Group for allowing the use of their facilities in this study, and Faculty of Pharmacy of Lisbon University for the institutional support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena M. Cabral Marques.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almeida, H.M., Cabral Marques, H.M. Physicochemical characterization of finasteride:PEG 6000 and finasteride:Kollidon K25 solid dispersions, and finasteride: β-cyclodextrin inclusion complexes. J Incl Phenom Macrocycl Chem 70, 397–406 (2011). https://doi.org/10.1007/s10847-010-9898-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9898-x

Keywords

Navigation