Skip to main content
Log in

Azocalix[4]pyrroles: one-pot microwave and one drop water assisted synthesis, spectroscopic characterization and preliminary investigation of its complexation with copper (II)

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Modified and advanced approach has been developed for the synthesis of meso-tetra(methyl) meso-tetra(4-hydroxy phenyl) calix[4]pyrrole, meso-tetra(methyl) meso-tetra(3, 5-dihydroxy phenyl) calix[4]pyrrole and their azo dyes using microwave irradiation. Results obtained from conventional method and microwave assisted synthesis have been compared in terms of ease, yield and time. Detailed reaction mechanism has also been discussed. The structures of all compounds were characterized based on FT-IR, 1H NMR and elemental analysis. A preliminary study on efficiency of these novel azocalix[4]pyrrole receptors towards copper (II) have been carried out by UV/Vis spectrophotometry at 25 °C which shows a distinct color change from yellow to red upon complexation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jain, V.K., Mandalia, H.C.: The chemistry of calixpyrroles. Heterocycles 71(6), 1261–1314 (2007)

    Article  CAS  Google Scholar 

  2. (a) Gale, P.A., Sessler, J.L., Kral, V.: Calixpyrroles. Chem. Commu. 1–8 (1998); (b) Gale, P.A., Anzenbacher Jr., P., Sessler, J.L., Calixpyrroles, I.I.: Coord. Chem. Rev. 222, 57–102 (2001). doi:10.1016/S0010-8545(01)00346-0

  3. (a) Martinez-Garcia, H., Morales, D., Perez, J., Coady, D.J., Bielawski, C.W., Gross, D.E., Cuesta, L., Marquez, M., Sessler, J.L.: Calix[4]pyrrole as a promoter of the CuCl-catalyzed reaction of styrene and chloramines-T. Organometallics 26, 6511–6514 (2007). doi:10.1021/om700958c; (b) Buranaprasertsuk, P., Tangsako, Y., Chavasiri, W.: Epoxidation of alkenes catalyzed by cobalt (II) calix[4]pyrrole. Catal. Commun. 8, 310–314 (2007). doi:10.1016/j.catcom.2006.06.022; (c) Cafeo, G., Rosa, M.D., Kohnke, F.H., Neri, P., Soriente, A., Valenti, L.: Efficient organocatalysis with calix[4]pyrrole derivative. Tetrahedron Lett. 49, 153–155 (2008). doi:10.1016/j.tetlet.2007.10.148

  4. Zhou, C., Tang, H., Shao, S., Jiang, S.: Calix[4]pyrrole-bonded HPLC stationary phase for the separation of phenols, benzenecarboxylic acids and medicines. J. Liquid Chromatogr. Relat. Technol. 29, 1961–1978 (2006). doi:10.1080/10826070600758167

    Article  CAS  Google Scholar 

  5. (a) Ghiasvand, A.R., Moradi, F., Sharghi, H., Hasaninejad, A.R.: Determination of silver (I) by electro thermal-AAS in a microplet formed from a homogeneous liquid–liquid extraction system using tetraspirocyclohexylcalix[4]pyrrole. Anal. Sci. 21, 387–390 (2005). doi:10.2116/analsci.21.387; (b) Ghiasvand, A.R., Moradi, F., Sharghi, H., Shadabi, S., Hasaninejad, A.R.: Selective homogeneous liquid–liquid extraction and preconcentration of thallium using a new calix[4]pyrrole. Asian J. Chem. 18(3), 2016–2024 (2006)

    Google Scholar 

  6. Lohr, H.G., Vogtle, F.: Chromo and fluoroionophores. A new class of dye reagents. Acc. Chem. Res. 18, 65–89 (1985). doi:10.1021/ar00111a001

    Article  Google Scholar 

  7. (a) Bohmer, V.: Calixarenes, macrocycles with (almost) unlimited possibilities. Angew. Chem. Int. Ed. Engl. 34(7), 713–745 (1995). doi:10.1002/anie.199507131; (b) Gutsche, C.D.: in Calixarenes Revisited; Monographs in Supramolecular Chemistry Ed.; J.F. Stoddart, RSC, Cambridge, pp. 149–167. (1998); (c) Bohmer, V., Vicens, J.: Calixarenes; A Versatile Class of Macrocyclic Compounds Ed.; Kluwer Academic Publishers, Dordrecht, pp. 127–171. (1991)

  8. Asfari, Z., Bohmer, V., Harrowfield, J., Vicens, J.: Calixarene 2001, Ed.; Kluwer Academic Publishers, Chapter 34, pp 627–641 (2001)

  9. (a) Song, H., Chen, K., Wu, D., Tian, H.: Synthesis and absorption properties of some new azo metal chelates and their ligands. Dyes Pigments 60, 111–119 (2004). doi:10.1016/S0143-7208(03)00144-X; (b) Hartman, H., Schulze, M.: Nucleophilic substitution in aryl azo phenols—a simple route for preparing chloro-substituted azobenzene. Dyes and Pigments 15, 255–262 (1991); (d) Peters, A.T., Chisowa, E.: Color constitutions relationship in 2-acylamino-4-N, N-diethylaminoazobenzene disperse dyes. Dyes Pigments 22, 223–238 (1993). doi:10.1016/0143-7208(93)80015-S; (c) Catino, S.C., Farris, R.E.: ‘Azo-dyes’, In: Grayson M. (ed.) Concise Encyclopaedia of Chemical Technology, John Wiley and Sons, New York, pp. 142–144. (1985); (d) Venkataraman, K.: The chemistry of synthetic dyes, Vol. 3, New York (1970); (e) Zollinger, H.: Azo and diazo Chemistry. Interscience, New York (1961)

    Google Scholar 

  10. (a) Oueslati, F., Dumazeat-Bonnamour, I., lamartine, R.: New chromogenic azocalix[4]arene podands incorporating 2, 2′- bipyridyl subunits. New J. Chem. 27, 644–647 (2003); Synthesis and extraction properties of multifunctionalized azocalix[4]arenas containing bipyridyl subunits. N.J. Chem. 28, 1575–1578 (2004). doi:10.1039/b409428j; (b) Tilki, T., Sener, I., Karci, F., Gulce, A., Deligoz, H.: An approach to the synthesis of chemically modified bisazocalix[4]arenas and their extraction properties. Tetrahedron 61, 9624–9629 (2005). doi:10.1016/j.tet.2005.07.078; (c) Karakus, O.O., Deligoz, H.: Azocalix- arenes 8: Synthesis and investigation of the absorption spectra of di-substituted azocalix[4]arenas containing chromogenic groups. J. Incl. Phenom. Macrocycl. Chem. (2008). doi:10.1007/s10847-008-9421-9; (d) Metin, A., Taban, D., Deligoz, H.: Transition metal cations extraction by ester and ketone derivatives of chromogenic azo-calix[4]arenas. J. Hazard. Mater. 154(1–3), 51–54 (2008). doi:10.1016/j.jhazmat.2007.09.104; (e) Erden, E., Deligoz, H.: Comparative studies on the solvent extraction of transition metal cations by calixarene, phenol and ester derivatives. J. Hazard. Mater. 154(1–3), 29–32 (2008). doi:10.1016/j.jhazmat.2007.09.096; (f) Sulsak, A.K.M., Deligoz, H.: Azocalixarenes: Synthesis, characterization, complexation, extraction, absorption properties and thermal behaviours. J. Incl. Phenom. Macrocycl. Chem. 55, 223–228 (2006); Azocalixarenes 6: Synthesis, complexation, extraction and thermal behaviours of four new azocalix[4]arenes. J. Incl. Phenom. Macrocycl. Chem. 59, 115–123 (2007). doi:10.1007/s10847-007-9300-9; (g) Lu, L., Zhu, S., Liu, X., Xie, Z., Yan, X.: Highly selective chromogenic ionophore for the recognition of chromium (III) based on a water-soluble azocalixarene derivative. Anal. Chim. Acta 535, 183–187 (2005). doi:10.1016/j.aca.2004.11.059; (h) Ma, Q., Ma, H., Su, M., Wang, Z., Nie, L., Liang, S.: Determination of nickel by a new chromogenic azocalix[4]arene. Anal. Chim. Acta 439, 73–79 (2001). doi:10.1016/S0003-2670(01)01009-1

    Google Scholar 

  11. (a) Anzenbacher JR., P., Nishiyabu, R., Palacios, M.A.: N-confused calix[4]pyrroles. Coord. Chem. Rev. 250, 2929–2938 (2006). doi:10.1016/j.ccr.2006.09.001; (b) Wex, B., Anzenbacher Jr., P.: Proceeding of the 23rd national meeting of the american chemical society, orland, FL, April 7–11, American Chemical Society, Washington, DC, ORGN-245 (2002); (c) Gu, R., Depretere, S., Koteck, J., Budka, J., Wangner-wysiecka, E., Biernat, J.E., et al.: Anion recognition by α-arylazo-N-confused calix[4]pyrroles. Org. Biomol. Chem. 3, 2921–2923 (2005). doi:10.1039/b507508d

  12. (a) de La Hoz, A., Diaz-ortiz, A., Moreno, A.: Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev. 34, 164–178 (2005). doi:10.1039/b411438h; (b) Khalafi-Nezhad, A., Rad, M.N.S., Hakimelahi, G.H.: Synthesis of polyfunctional aromatic ring systems (phlorogluside analogs) under microwave irradiation. Helv. Chim. Acta 86(7), 2396–2403 (2003). doi:10.1002/hlca.200390192; (c) Varma, R.S.: Solvent free organic synthesis, using supported reagents and microwave irradiation. Green Chem. 1, 43–55 (1999). doi:10.1039/a808223e; (d) Kappe, C.O.: Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. 43, 6250–6284 (2004). doi:10.1002/anie.200400655; (e) Perreux, L., Loupy, A.: A tentative rationalization of microwave effect in organic synthesis according to the reaction medium and mechanistic consideration. Tetrahedron 57(45), 9199–9223 (2001). doi:10.1016/S0040-4020(01)00905-X; (f) Lidstrom, P., Tierney, J., Wathey, B., Westman, J.: Microwave assisted organic synthesis-a review. Tetrahedron 57, 9225–9283 (2001). doi:10.1016/S0040-4020(01)00906-1; (g) Kingston, H.M., Jassie, L.B.: Introduction to Microwave Sample Preparation-Theory and Practice, ACS: Washington (1988); (h) Hayes, B.L.: In: microwave synthesis: Chemistry at the speed of light; CEM Publishing: Matthews, USA (2002); (i) Loupy, A.: Microwaves in organic synthesis; Wiley-VCH Verlag Gbh & Co. KGaA: Weinhein (2002); (j) Jin, J., Wen, Z., Long, Z., Wang, Y., Matsuura, T., Meng, J.: One-pot diazo coupling reaction under microwave irradiation in the absence of solvent. Synth. Commun. 30(5), 829–834 (2000). doi:10.1080/00397910008087094

    Google Scholar 

  13. Radha kishan, M., Radha Rani, V., Sita Devi, P., Kulkarni, S.J., Raghavan, K.V.: A novel zeolite based stationary phases for in situ synthesis and evaluation of porphyrins and calix[4]pyrroles. J. Mol. Catal. Chem. 269, 30–34 (2007). doi:10.1016/j.molcata.2007.01.004

    Article  CAS  Google Scholar 

  14. Jain, V.K., Mandalia, H.C., Eringathodi, S.: A facial microwave assisted synthesis, spectroscopic characterization and preliminary complexation studies of calix[4]pyrroles containing the hydroxamic moiety. J. Incl. Phenom. Macrocycl. Chem. (2008). doi:10.1007/s10847-008-9453-1

  15. (a) Anzenbacher Jr., P., Jursıkova, K., Lynch, V.M., Gale, P.A., Sessler, J.L.: Calix[4]pyrroles containing deep cavities and fixed walls. Synthesis, structural studies, and anion binding properties of the isomeric products derived from the condensation of p-. Hydroxyacetophenone Pyrrole. J. Am. Chem. Soc. 121, 11020–11021 (1999). doi:10.1021/ja993195n; (b) Guzman, G.R., Benet-Buchholz, J., Escudero-Adan, E.C., Ballester, P.: Solid state self-assembly of a calix[4]pyrrole-resorcinarene hybride into a hexameric cage. J. Am. Chem. Soc. 129, 3820–3821 (2007). doi:10.1021/ja067648h

  16. Danil de Namor, A.F., Mohammed, S.: Double cavity calix[4]pyrrole derivative with enhanced capacity for the fluoride anion. J. Phys. Chem. B 109, 17440–17444 (2005). doi:10.1021/jp0530707

    Article  CAS  Google Scholar 

  17. Marczenko, Z.: Spectrophotometric Determination of Elements, pp. 238–253. Ellis-Horwood Ltd, Chichester (1976)

    Google Scholar 

  18. Sessler, J.L., Anzenbacher Jr., P., Jursikovs, K., Miyaji, H., Genge, J.W., Tvermoes, N.A., et al.: Functionalized calix[4]pyrroles. Pure Appl. Chem. 70(12), 2401–2408 (1998). doi:10.1351/pac199870122401

    Article  CAS  Google Scholar 

  19. Furniss, B.S., Hannford, A.J., Rogers, V.P., Smith, W.G., Tatchell, A.R.: “Vogel’s Textbook of Practical Organic Chemistry”, 4th Edn. Longan (1978)

Download references

Acknowledgments

The authors gratefully acknowledge the financial assistance provided by CSIR, New Delhi, India to carry out this work. The authors also acknowledge CDRI (Lucknow), SAIF (IIT, Mumbai) and CSMCRI (Bhavnagar) for providing instrumental facilities and INFLIBNET, Ahmedabad for providing online journals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod K. Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, V.K., Mandalia, H.C. Azocalix[4]pyrroles: one-pot microwave and one drop water assisted synthesis, spectroscopic characterization and preliminary investigation of its complexation with copper (II). J Incl Phenom Macrocycl Chem 63, 27–35 (2009). https://doi.org/10.1007/s10847-008-9485-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-008-9485-6

Keywords

Navigation