Skip to main content
Log in

Magnetic guidance versus manual control: comparison of radiofrequency lesion dimensions and evaluation of the effect of heart wall motion in a myocardial phantom

  • MULTIMEDIA REPORT
  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Background

Magnetic navigation system (MNS) ablation was suspected to be less effective and unstable in highly mobile cardiac regions compared to radiofrequency (RF) ablations with manual control (MC). The aim of the study was to compare the (1) lesion size and (2) stability of MNS versus MC during irrigated RF ablation with and without simulated mechanical heart wall motion.

Methods

In a previously validated myocardial phantom, the performance of Navistar RMT Thermocool catheter (Biosense Webster, CA, USA) guided with MNS was compared to manually controlled Navistar irrigated Thermocool catheter (Biosense Webster, CA, USA). The lesion dimensions were compared with the catheter in inferior and superior orientation, with and without 6-mm simulated wall motion. All ablations were performed with 40 W power and 30 ml/ min irrigation for 60 s.

Results

A total of 60 ablations were performed. The mean lesion volumes with MNS and MC were 57.5 ± 7.1 and 58.1 ± 7.1 mm3, respectively, in the inferior catheter orientation (n = 23, p = 0.6), 62.8 ± 9.9 and 64.6 ± 7.6 mm3, respectively, in the superior catheter orientation (n = 16, p = 0.9). With 6-mm simulated wall motion, the mean lesion volumes with MNS and MC were 60.2 ± 2.7 and 42.8 ± 8.4 mm3, respectively, in the inferior catheter orientation (n = 11, p = <0.01*), 74.1 ± 5.8 and 54.2 ± 3.7 mm3, respectively, in the superior catheter orientation (n = 10, p = <0.01*). During 6-mm simulated wall motion, the MC catheter and MNS catheter moved 5.2 ± 0.1 and 0 mm, respectively, in inferior orientation and 5.5 ± 0.1 and 0 mm, respectively, in the superior orientation on the ablation surface.

Conclusions

The lesion dimensions were larger with MNS compared to MC in the presence of simulated wall motion, consistent with greater catheter stability. However, similar lesion dimensions were observed in the stationary model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MNS:

Magnetic navigation system

MC:

Manual control

References

  1. Davis, D. R., Tang, A. S. L., Gollob, M. H., Lemery, R., Green, M. S., & Birnie, D. H. (2008). Remote magnetic navigation-assisted catheter ablation enhances catheter stability and ablation success with lower catheter temperatures. Pacing & Clinical Electrophysiology, 31(7), 893–898.

    Article  Google Scholar 

  2. Bradfield, J., Tung, R., Mandapati, R., Boyle, N. G., & Shivkumar, K. (2012). Catheter ablation utilizing remote magnetic navigation: a review of applications and outcomes. Pacing and Clinical Electrophysiology, 35(8), 1021–1034.

    Article  PubMed  Google Scholar 

  3. Bauernfeind, T., Akca, F., Schwagten, B., de Groot, N., Van Belle, Y., Valk, S., et al. (2011). The magnetic navigation system allows safety and high efficacy for ablation of arrhythmias. Europace, 13(7), 1015–1021.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Proietti, R., Pecoraro, V., Di Biase, L., Natale, A., Santangeli, P., Viecca, M., et al. (2013). Remote magnetic with open-irrigated catheter vs. manual navigation for ablation of atrial fibrillation: a systematic review and meta-analysis. Europace, 15(9), 1241–1248.

    Article  PubMed  Google Scholar 

  5. Shurrab, M., Danon, A., Lashevsky, I., Kiss, A., Newman, D., Szili-Torok, T., et al. (2013). Robotically assisted ablation of atrial fibrillation: a systematic review and meta-analysis. International Journal of Cardiology, 169(3), 157–165.

    Article  PubMed  Google Scholar 

  6. Chun, K. R. J., Wissner, E., Koektuerk, B., Konstantinidou, M., Schmidt, B., Zerm, T., et al. (2010). Remote-controlled magnetic pulmonary vein isolation using a new irrigated-tip catheter in patients with atrial fibrillation. Circulation Arrhythmia & Electrophysiology, 3(5), 458–464.

    Article  Google Scholar 

  7. Schmidt, B., Chun, K. R. J., Tilz, R. R., Koektuerk, B., Ouyang, F., & Kuck, K. H. (2008). Remote navigation systems in electrophysiology. Europace, 10(3), 57–61.

    Google Scholar 

  8. Latcu, D. G., Ricard, P., Zarqane, N., Yaici, K., Rinaldi, J. P., Maluski, A., et al. (2009). Robotic magnetic navigation for ablation of human arrhythmias: initial experience. Archives of Cardiovascular Diseases, 102(5), 419–425.

    Article  PubMed  Google Scholar 

  9. Miyazaki, S., Shah, A. J., Xhaët, O., Derval, N., Matsuo, S., Wright, M., et al. (2010). Remote magnetic navigation with irrigated tip catheter for ablation of paroxysmal atrial fibrillation. Circulation. Arrhythmia and Electrophysiology, 3(6), 585–589.

    Article  PubMed  Google Scholar 

  10. Arya, A., Zaker-Shahrak, R., Sommer, P., Bollmann, A., Wetzel, U., Gaspar, T., et al. (2011). Catheter ablation of atrial fibrillation using remote magnetic catheter navigation: a case–control study. Europace, 13(1), 45–50.

    Article  PubMed  Google Scholar 

  11. Schwagten, B., Szili-Torok, T., Rivero-Ayerza, M., Jessurun, E., Valk, S., & Jordaens, L. (2009). Usefulness of remote magnetic navigation for ablation of ventricular arrhythmias originating from outflow regions. Netherlands Heart Journal, 17(6), 245–249.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kalman, J. M., Fitzpatrick, A. P., Olgin, J. E., Chin, M. C., Lee, R. J., Scheinman, M. M., et al. (1997). Biophysical characteristics of radiofrequency lesion formation in vivo: dynamics of catheter tip–tissue contact evaluated by intracardiac echocardiography. American heart journal, 133(1), 8–18.

    Article  CAS  PubMed  Google Scholar 

  13. Chik, W. W. B., Barry, M. A., Thavapalachandran, S., Midekin, C., Pouliopoulos, J. I. M., Lim, T. W., et al. (2013). High spatial resolution thermal mapping of radiofrequency ablation lesions using a novel thermochromic liquid crystal myocardial phantom. Journal of Cardiovascular Electrophysiology, 24(11), 1278–1286.

    Article  PubMed  Google Scholar 

  14. Shah, D. C., Lambert, H., Nakagawa, H., Langenkamp, A., Aeby, N., & Leo, G. (2010). Area under the real-time contact force curve (force–time integral) predicts radiofrequency lesion size in an in vitro contractile model. Journal of Cardiovascular Electrophysiology, 21(9), 1038–1043.

    Article  PubMed  Google Scholar 

  15. Faddis, M. N., Chen, J., Osborn, J., Talcott, M., Cain, M. E., & Lindsay, B. D. (2003). Magnetic guidance system for cardiac electrophysiologya prospective trial of safety and efficacy in humans. Journal of the American College of Cardiology, 42(11), 1952–1958.

    Article  PubMed  Google Scholar 

  16. Reddy, V. Y., Shah, D., Kautzner, J., Schmidt, B., Saoudi, N., Herrera, C., et al. (2012). The relationship between contact force and clinical outcome during radiofrequency catheter ablation of atrial fibrillation in the TOCCATA study. Heart rhythm, 9(11), 1789–1795.

    Article  PubMed  Google Scholar 

  17. Faddis, M. N., Blume, W., Finney, J., Hall, A., Rauch, J., Sell, J., et al. (2002). Novel, magnetically guided catheter for endocardial mapping and radiofrequency catheter ablation. Circulation, 106(23), 2980–2985.

    Article  PubMed  Google Scholar 

  18. Thornton, A., De Castro, C. B., Van Deel, E., Van Beusekom, H., & Jordaens, L. (2010). An in vivo comparison of radiofrequency cardiac lesions formed by standard and magnetically steered 4 mm tip catheters. Netherlands Heart Journal, 18(2), 66–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Gallagher, N., Fear, E. C., Byrd, I. A., & Vigmond, E. J. (2013). Contact geometry affects lesion formation in radio-frequency cardiac catheter ablation. PloS One, 8(9), e73242.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Lüthje, L., Vollmann, D., Seegers, J., Dorenkamp, M., Sohns, C., Hasenfuss, G., et al. (2011). Remote magnetic versus manual catheter navigation for circumferential pulmonary vein ablation in patients with atrial fibrillation. Clinical Research in Cardiology, 100(11), 1003–1011.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the Westmead hospital research fund. We thank the staff of the cardiology department.

Conflicts of interest

None of the authors had any conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Bhaskaran.

Additional information

Tony Barry was the co-first author.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 9984 kb).

(MP4 22677 kb).

(MP4 25800 kb).

(MP4 28206 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhaskaran, A., Barry, M.A.(., I. Al Raisi, S. et al. Magnetic guidance versus manual control: comparison of radiofrequency lesion dimensions and evaluation of the effect of heart wall motion in a myocardial phantom. J Interv Card Electrophysiol 44, 1–8 (2015). https://doi.org/10.1007/s10840-015-0023-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-015-0023-3

Keywords

Navigation