Skip to main content
Log in

A 65nm CMOS Ramp Generator Design and its Application Towards a BIST Implementation of the Reduced-Code Static Linearity Test Technique for Pipeline ADCs

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

This work presents an efficient on-chip ramp generator targeting to facilitate the deployment of Built-In Self-Test (BIST) techniques for ADC static linearity characterization. The proposed ramp generator is based on a fully-differential switched-capacitor integrator that is conveniently modified to produce a very small integration gain, such that the ramp step size is a small fraction of the LSB of the target ADC. The proposed ramp generator is employed in a servo-loop configuration to implement a BIST version of the reduced-code linearity test technique for pipeline ADCs, which drastically reduces the volume of test data and, thereby, the test time, as compared to the standard test based on a histogram. The demonstration of the pipeline ADC BIST is carried out based on a mixture of transistor-level and behavioral-level simulations that employ actual production test data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. (2011) IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters. IEEE Std 1241-2010 (Revision of IEEE Std 1241-2000):1–139. doi:10.1109/IEEESTD.2011.5692956

  2. Arabi K, Kaminska B (1997) Oscillation built-in self test (obist) scheme for functional and structural testing of analog and mixed-signal integrated circuits. In: Proceedings of the international Test Conference, 1997, pp 786–795. doi:10.1109/TEST.1997.639692, pp 786–795

  3. Bernard S, Azais F, Bertrand Y, Renovell M (2002) A high accuracy triangle-wave signal generator for on-chip ADC testing. In: 2002 Proceedings of the Seventh IEEE European Test Workshop. pp 89–94. doi:doi.org/10.1109/ETW.2002.1029644, pp 89–94

  4. Choksi O, Carley L (2003) Analysis of switched-capacitor common-mode feedback circuit. IEEE Trans Circuits Syst II, Analog Digit Signal Process 50(12):906–917. doi:10.1109/TCSII.2003.820253

    Article  Google Scholar 

  5. Enz C, Temes G (1996) Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc IEEE 84(11):1584–1614. doi:10.1109/5.542410

  6. Goyal S, Chatterjee A, Atia M, Iglehart H, Chen CY, Shenouda B, Khouzam N, Haggag H (2005) Test time reduction of successive approximation register A/D converter by selective code measurement. In: Proceedings of the IEEE International Test Conference, ITC 2005, pp. 8–225. doi:10.1109/TEST.2005.1583979

  7. Huang JL, Ong CK, Cheng KT (2000) A BIST scheme for on-chip ADC and DAC testing. In: Proceedings of the Design, Automation and Test in Europe Conference and Exhibition 2000. pp 216–220. doi:10.1109/DATE.2000.840041, pp 216–220

  8. Jalon MA, Rueda A, Peralias E (2009) Enhanced double-histogram test. Electron Lett 45(7):349–351. doi:10.1049/el.2009.0203

  9. Jansson C, Chen K, Svensson C (1994) Linear, polynomial and exponential ramp generators with automatic slope adjustment. IEEE Trans Circuits Syst I, Fundam Theory Appl 41(2):181–185. doi:10.1109/81.269058

  10. Jiang H, Olleta B, Chen D, Geiger R (2007) Testing High-Resolution ADCs With Low-Resolution/Accuracy Deterministic Dynamic Element Matched DACs. IEEE Trans Instrum Meas 56(5):1753–1762. doi:10.1109/TIM.2007.903621

  11. Jin L, Parthasarathy K, Kuyel T, Chen D, Geiger R (2005) Accurate testing of analog-to-digital converters using low linearity signals with stimulus error identification and removal. IEEE Trans Instrum Meas 54(3):1188–1199. doi:10.1109/TIM.2005.847240

    Article  Google Scholar 

  12. Laraba A, Stratigopoulos H, Mir S, Naudet H, Bret G (2013) Reduced code linearity testing of pipeline adcs in the presence of noise. In: 2013 IEEE 31st VLSI Test Symposium (VTS). pp 1–6. doi:10.1109/VTS.2013.6548913

  13. Laraba A, Stratigopoulos HG, Mir S, Naudet H (2015) Exploiting Pipeline ADC Properties for a Reduced-Code Linearity Test Technique. IEEE Trans Circuits Syst Regul Pap 62(10):2391–2400. doi:10.1109/TCSI.2015.2469014

    Article  MathSciNet  Google Scholar 

  14. Laraba A, Stratigopoulos HG, Mir S, Naudet H, Bret G (2013) Reduced-Code Linearity Testing of Pipeline ADCs. IEEE Des Test 30(6):80–88. doi:10.1109/MDAT.2013.2267957

    Article  Google Scholar 

  15. Laraba A, Stratigopoulos HG, Mir S, Naudet H, Forel C (2012) Enhanced reduced code linearity test technique for multi-bit/stage pipeline ADCs. In: 2012 17th IEEE European Test Symposium (ETS), pp 1–6. doi:10.1109/ETS.2012.6233009

  16. Lin JF, Chang SJ, Kung TC, Ting HW, Huang CH (2011) Transition-Code Based Linearity Test Method for Pipelined ADCs With Digital Error Correction. IEEE Trans Very Large Scale Integr VLSI Syst 19(12):2158–2169. doi:10.1109/TVLSI.2010.2089543

    Article  Google Scholar 

  17. Oliaei O (2000) Thermal noise analysis of multi-input SC-integrators for delta-sigma modulator design. In: Proceedings of the 2000 IEEE international symposium on circuits and systems, ISCAS 2000, pp 425–428, vol 4. Geneva. doi:10.1109/ISCAS.2000.858779

  18. Peralias E, Gines A, Rueda A (2014) Inl systematic reduced-test technique for pipeline adcs. In: 2014 19th IEEE European Test Symposium (ETS), pp 1–6. doi:10.1109/ETS.2014.6847818, pp 1–6

  19. Provost B, Sanchez-Sinencio E (2003) On-chip ramp generators for mixed-signal BIST and ADC self-test. IEEE J Solid State Circuits 38(2):263–273. doi:10.1109/JSSC.2002.807415

    Article  Google Scholar 

  20. Renaud G, Barragan M, Mir S (2015) Design of an on-chip stepwise ramp generator for ADC static BIST applications. In: 2015 20th International Mixed-Signal Testing Workshop (IMSTW). pp 1–6. doi:10.1109/IMS3TW.2015.7177876

  21. Renaud G, Barragan M, Mir S, Sabut M (2014) On-Chip Implementation of an Integrator-Based Servo-Loop for ADC Static Linearity Test. In: 2014 IEEE 23rd Asian Test Symposium (ATS). pp 212–217. doi:10.1109/ATS.2014.47

  22. Schreier R, Temes GC (2009) Appendix c: Noise in Switched-Capacitor Delta-Sigma data converters. In: Understanding delta-sigma data converters, pp 417–442

  23. Wang LC, Sanchez-Sinencio E, Maloberti F (2000) Very linear ramp-generators for high resolution ADC BIST and calibration. In: Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, 2000, vol 2, pp 908–911. doi:10.1109/MWSCAS.2000.952901

  24. Yavari M, Shoaei O (2004) Low-voltage low-power fast-settling CMOS operational transconductance amplifiers for switched-capacitor applications. Circuits, Devices Syst, IEE Proc 151(6):573–578. doi:10.1049/ip-cds:20040414

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Renaud.

Additional information

Responsible Editors: G. Léger and C. Wegener

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renaud, G., Barragan, M.J., Laraba, A. et al. A 65nm CMOS Ramp Generator Design and its Application Towards a BIST Implementation of the Reduced-Code Static Linearity Test Technique for Pipeline ADCs. J Electron Test 32, 407–421 (2016). https://doi.org/10.1007/s10836-016-5599-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-016-5599-8

Keywords

Navigation