Skip to main content
Log in

Effect of metal electrodes on the steady-state leakage current in PZT thin film capacitors

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The ferroelectric Ir/PZT/Pt and Au/PZT/Pt capacitor structures are studied by the electron beam induced current (EBIC) technique and the steady-state current–voltage dependencies. EBIC data reveal the change in the local field at the PZT/metal interfaces caused by migration of oxygen vacancies \({V}_{o}^{**}\) under an action of applied electric field. Ir/PZT and Pt/PZT interfaces block \({V}_{o}^{**}\) movement causing their accumulation near the cathode interface. An electrons injection from the metal cathode to the PZT leads to formation of induced p–n junction. The steady-state leakage current in this case is well described by modified equation for the p-n diode, which considers an action of the counter electric field caused by electrons injection. In the case of transparent for oxygen vacancies Au/PZT cathode oxygen vacancies leave the PZT bulk and current–voltage dependence demonstrates a region of negative differential conductivity at high electric fields. The proposed p–n junction formalism can be used for engineering of PZT-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. N. Izyumskaya, Y.I. Alivov, S.J. Cho, H. Morkoç, H. Lee, Y.S. Kang, “Processing, structure, properties, and applications of PZT thin films,” Crit. Rev. Solid State Mater. Sci. 32(3–4), Taylor and Francis Inc., pp. 111–202 (2007). https://doi.org/10.1080/10408430701707347

  2. J.F. Scott, Ferroelectric memories (Springer, Berlin New York, 2000)

    Book  Google Scholar 

  3. K.A. Vorotilov, A.S. Sigov, “Ferroelectric memory,”. Phys Sol State. 54(5), 2012. https://doi.org/10.1134/S1063783412050460

  4. D.A. Abdullaev et al., “Ferroelectric memory: state-of-the-art manufacturing and research,”. Russ. Technol. J. 8(5), 44–67 (2020). https://doi.org/10.32362/2500-316x-2020-8-5-44-67

  5. C.B. Eom, S. Trolier-McKinstry, Thin-film piezoelectric MEMS. MRS Bull. 37(11), 1007–1017 (2012). https://doi.org/10.1557/mrs.2012.273

    Article  CAS  Google Scholar 

  6. T. Liu et al. “Flexible thin-film PZT ultrasonic transducers on polyimide substrates,” Sensors (Switzerland). 21(3), MDPI AG, 1–9 (2021). https://doi.org/10.3390/s21031014

  7. Y. Zhao, X. Hao, Q. Zhang, Energy-storage properties and electrocaloric effect of Pb (1–3 x /2)LaxZr0.85Ti0.15O 3 antiferroelectric thick films. ACS Appl. Mater. Interfaces. 6(14), 11633–11639 (2014). https://doi.org/10.1021/am502415z

    Article  CAS  Google Scholar 

  8. N. Setter et al., “Ferroelectric thin films: Review of materials, properties, and applications,”. J Appl Phys. 100(5), (2006). https://doi.org/10.1063/1.2336999

  9. M.M. Zhang, Z. Jia, T.L. Ren, “Effects of electrodes on the properties of sol-gel PZT based capacitors in FeRAM,” Sol. State Electron. 53(5), Pergamon, 473–477 (2009). https://doi.org/10.1016/j.sse.2009.03.005

  10. Y. Chen, P.C. McIntyre, “Effects of chemical stability of platinum/lead zirconate titanate and iridium oxide/lead zirconate titanate interfaces on ferroelectric thin film switching reliability,” Appl. Phys. Lett. 91(23), (2007). https://doi.org/10.1063/1.2822419

  11. K. Liang et al., The conductivity mechanism and an improved C-V model of ferroelectric PZT thin film. J. Appl. Phys. 117(17), 174107 (2015). https://doi.org/10.1063/1.4919431

    Article  CAS  Google Scholar 

  12. G. Holzlechner, D. Kastner, C. Slouka, H. Hutter, J. Fleig, Oxygen vacancy redistribution in PbZrxTi1-xO3 (PZT) under the influence of an electric field. Solid State Ionics 262, 625–629 (2014). https://doi.org/10.1016/j.ssi.2013.08.027

    Article  CAS  Google Scholar 

  13. L. Pintilie, I. Vrejoiu, D. Hesse, M. Alexe, “The influence of the top-contact metal on the ferroelectric properties of epitaxial ferroelectric Pb (Zr0.2Ti0.8) O3 thin films,” J. Appl. Phys. 104(11), 114101 (2008). https://doi.org/10.1063/1.3021293

  14. T.L. Ren, L.T. Zhang, L.H. Liu, Z.J. Li, Studies of a PT/PZT/PT sandwich structure for feram applications using sol-gel processing. Integr. Ferroelectr. 39(1–4), 215–222 (2001). https://doi.org/10.1080/10584580108011944

    Article  Google Scholar 

  15. P. Zubko, D.J. Jung, J.F. Scott, “Electrical characterization of PbZr0.4Ti0.6O3 capacitors,”. J. Appl. Phys. 100(11), (2006). https://doi.org/10.1063/1.2382479

  16. X. Chen, A.I. Kingon, L. Mantese, O. Auciellot, K.Y. Hsieh, Characterization of conduction in PZT thin films produced by laser ablation deposition. Integr. Ferroelectr. 3(4), 355–363 (1993). https://doi.org/10.1080/10584589308216691

    Article  CAS  Google Scholar 

  17. J. Zhang, M.H. Tang, J. He, Doping concentration and thickness effects in ferroelectric thin films. Appl. Phys. Lett. 96(12), 122905 (2010). https://doi.org/10.1063/1.3364136

    Article  CAS  Google Scholar 

  18. I. Stolichnov, A. Tagantsev, “Space-charge influenced-injection model for conduction in Pb(ZrxTi1-x)O3 thin films,”. J. Appl. Phys. 84(6), 3216–3225 (1998). https://doi.org/10.1063/1.368888

  19. Sigov, Y. Podgorny, K. Vorotilov, A. Vishnevskiy, “Leakage currents in ferroelectric thin films,” in Phase Transit. 86(11), 1141–1151 (2013). https://doi.org/10.1080/01411594.2013.790033

  20. Y.V. Podgornyi, K.A. Vorotilov, A.S. Sigov, “Leakage currents in thin ferroelectric films,” Phys. Sol. State. 54(5), (2012). https://doi.org/10.1134/S1063783412050332

  21. Y. Podgorny, K. Vorotilov, A. Sigov, “Negative differential conductivity in thin ferroelectric films,” Appl. Phys. Lett. 105(18), (2014). https://doi.org/10.1063/1.4901317

  22. G.W. Dietz, M. Schumacher, R. Waser, S.K. Streiffer, C. Basceri, A.I. Kingon, Leakage currents in Ba0.7Sr0.3TiO3 thin films for ultrahigh-density dynamic random access memories. J. Appl. Phys. 82(5), 2359–2364 (1997). https://doi.org/10.1063/1.366045

    Article  CAS  Google Scholar 

  23. Y. Podgorny, K. Vorotilov, A. Sigov, “Estimation of steady-state leakage current in polycrystalline PZT thin films,” AIP Adv. 6(9), (2016). https://doi.org/10.1063/1.4964147

  24. Y.V. Podgornyi, K.A. Vorotilov, A.S. Sigov, “Determination of the steady state leakage current in structures with ferroelectric ceramic films,”. Phys. Sol. State. 60(3), (2018). https://doi.org/10.1134/S1063783418030253

  25. R.C. Alig, S. Bloom, Electron-hole-pair creation energies in semiconductors. Phys. Rev. Lett. 35(22), 1522–1525 (1975). https://doi.org/10.1103/PhysRevLett.35.1522

    Article  CAS  Google Scholar 

  26. D. Abou-Ras, N. Schäfer, N. Baldaz, S. Brunken, C. Boit, Electron-beam-induced current measurements with applied bias provide insight to locally resolved acceptor concentrations at p-n junctions. AIP Adv. 5(7), 77191 (2015). https://doi.org/10.1063/1.4928097

    Article  CAS  Google Scholar 

  27. N.M. Kotova, K.A. Vorotilov, D.S. Seregin, A.S. Sigov, “Role of precursors in the formation of lead zirconate titanate thin films,” Inorg. Mater. 50(6), (2014). https://doi.org/10.1134/S0020168514060107

  28. Y.S. Yang, S.J. Lee, S.H. Kim, B.G. Chae, M.S. Jang, Schottky barrier effects in the electronic conduction of sol-gel derived lead zirconate titanate thin film capacitors. J. Appl. Phys. 84(9), 5005–5011 (1998). https://doi.org/10.1063/1.368747

    Article  CAS  Google Scholar 

  29. J.F. Scott, K. Watanabe, A.J. Hartmann, R.N. Lamb, Device models for PZT/Pt, BST/Pt, SBT/Pt, and SBT/Bi ferroelectric memories. Ferroelectrics 225(1–4), 83–90 (1999). https://doi.org/10.1080/00150199908009114

    Article  Google Scholar 

  30. S. Takatani, K. Kushida-Abdelghafar, H. Miki, “Effect of H2 Annealing on a Pt/PbZrxTi1-xO3 Interface Studied by X-Ray Photoelectron Spectroscopy,” Japan. J. Appl. Phys. 36(Part 2, No. 4A), L435–L438, (1997). https://doi.org/10.1143/jjap.36.l435

  31. B. Akkopru-Akgun, W. Zhu, C.A. Randall, M.T. Lanagan, S. Trolier-Mckinstry, Polarity dependent DC resistance degradation and electrical breakdown in Nb doped PZT films. APL Mater. 7(12), 120901 (2019). https://doi.org/10.1063/1.5115391

    Article  CAS  Google Scholar 

  32. T. Mihara, H. Watanabe, H. Yoshimori, C.A. Paz De Araujo, B. Melnick, L.D. McMillan, Process dependent electrical characteristics and equivalent circuit model of sol-gel based PZT capacitors. Integr. Ferroelectr. 1(2–4), 269–291 (1992). https://doi.org/10.1080/10584589208215717

    Article  CAS  Google Scholar 

  33. N.J. Donnelly, C.A. Randall, “Pb loss in Pb(Zr,Ti)O3 ceramics observed by in situ ionic conductivity measurements,” in J. Appl. Phys. 109(10), 104107 (2011). https://doi.org/10.1063/1.3585831

  34. A. Klein, “Interface Properties of Dielectric Oxides,” J. Am. Cer. Soc. 99(2), Blackwell Publishing Inc., pp 369–387, (2016). https://doi.org/10.1111/jace.14074

  35. Y.V. Podgornyi, K.A. Vorotilov, A.S. Sigov, Determination of the Steady State Leakage Current in Structures with Ferroelectric Ceramic Films. Phys. Solid State 60(3), 433–436 (2018). https://doi.org/10.1134/S1063783418030253

    Article  CAS  Google Scholar 

  36. P. Muralt, Polar Oxide Thin Films for MEMS Applications. In: Schneller, T., Waser, R., Kosec, M., Payne, D. (eds) Chemical Solution Deposition of Functional Oxide Thin Films. Springer, Vienna. (2013). https://doi.org/10.1007/978-3-211-99311-8_24

Download references

Acknowledgements

This work is supported by the Russian Foundation for Basic Research (RFBR) under grant № 19-29-03058. The ferroelectrics program conceptualization and selection of the material for this research were conducted under the Ministry of Science and Higher Education of Russia program № 0706-2020-0022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin A. Vorotilov.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podgorny, Y.V., Antonovich, A.N., Petrushin, A.A. et al. Effect of metal electrodes on the steady-state leakage current in PZT thin film capacitors. J Electroceram 49, 15–21 (2022). https://doi.org/10.1007/s10832-022-00288-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-022-00288-5

Keywords

Navigation