Skip to main content

Advertisement

Log in

High energy storage, structure evolution and dielectric properties of complex perovskite solid solution (1-x) NaNbO3-xBi (Zn2/3Nb1/3) O3

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

NaNbO3-based lead-free ceramics show great potential in energy storage and piezoelectric applications due to the antiferroelectric and ferroelectric features. However, pure NaNbO3 usually shows lossy hysteresis loops because of the metastable antiferroelectric phase at room temperature. In this work, Bi(Zn2/3Nb1/3)O3 was introduced into NaNbO3 to modulate the phase structure, dielectric, and energy storage properties. The addition of Bi(Zn2/3Nb1/3)O3 changed the phase structure from orthorhombic to pseudo-cubic, decreased the grain size from ~ 20 μm to ~ 1 μm, shifted the temperature of dielectric peak from 360℃ to room temperature, and led to much-reduced polarization hysteresis and improved breakdown strength. With the addition of 9 mol% Bi(Zn2/3Nb1/3)O3, the maximum recoverable energy density of 3.3 J/cm3 was achieved under 33.5 kV/mm. These results provide a feasible route to design and fabricate new NaNbO3-based energy storage ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statements

All data generated or analysed during this study are included in this published article.

References

  1. F. Li, M.J. Cabral, B. Xu et al., Science 364, 264–268 (2019)

    Article  CAS  Google Scholar 

  2. H. Fu, R.E. Cohen, Nature 403, 281–283 (2000)

    Article  CAS  Google Scholar 

  3. J.F. Scott, Science 315, 954–959 (2007)

    Article  CAS  Google Scholar 

  4. K.J. Choi, M. Biegalski, Y.L. Li et al., Science 306, 1005–1009 (2004)

    Article  CAS  Google Scholar 

  5. H. Pan, F. Li, Y. Liu et al., Science 365, 578–582 (2019)

    Article  CAS  Google Scholar 

  6. H. Zheng, J. Wang, S.E. Lofland et al., Science 303, 661–663 (2004)

    Article  CAS  Google Scholar 

  7. C. Zhao, H. Wu, F. Li et al., J. Am. Chem. Soc. 140, 15252–15260 (2018)

    Article  CAS  Google Scholar 

  8. X. Zhou, H. Qi, Z. Yan, G. Xue, H. Luo, D. Zhang, ACS Appl. Mater. Inter. 11, 43107–43115 (2019)

    Article  CAS  Google Scholar 

  9. H. Qi, R. Zuo, J. Mater. Chem. A 7, 3971–3978 (2019)

    Article  CAS  Google Scholar 

  10. X.F. Zhou, H. Qi, Z.N. Yan, G.L. Xue, H. Luo, D. Zhang, J. Eur. Ceram. Soc. 39, 4053–4059 (2019)

    Article  CAS  Google Scholar 

  11. J. Wu, D. Xiao, J. Zhu, Chem. Rev. 115, 2559–2595 (2015)

    Article  CAS  Google Scholar 

  12. T. Zheng, H. Wu, Y. Yuan et al., Energy. Environ. Sci. 10, 528–537 (2017)

    CAS  Google Scholar 

  13. H. Tao, J. Wu, J. Mater. Sci.: Mater. Electron. 28, 16199–16204 (2017)

    CAS  Google Scholar 

  14. Z. Yan, D. Zhang, X. Zhou et al., J. Mater. Chem. A 7, 10702–10711 (2019)

    Article  CAS  Google Scholar 

  15. L. Zhao, Q. Liu, J. Gao, S. Zhang, J.F. Li, Adv. Mater. 29, 1701824 (2017)

    Article  Google Scholar 

  16. H. Qi, R. Zuo, Li J-f, Li L. J. Eur. Ceram. Soc. 38, 5341–5347 (2018)

    Article  CAS  Google Scholar 

  17. R. Zuo, H. Qi, J. Fu, Appl. Phys. Lett. 109, 022902 (2016)

  18. H. Qi, R. Zuo, A. Xie, A. Tian, J. Fu, Y. Zhang, S. Zhang, Adv. Funct. Mater. 29, 1903877 (2019)

  19. H. Qi, R. Zuo, A. Xie, J. Fu, D. Zhang, J. Eur. Ceram. Soc. 39, 3703–3709 (2019)

    Article  CAS  Google Scholar 

  20. J. Koruza, J. Tellier, B. Malič, V. Bobnar, M. Kosec, J. Appl. Phys. 108, 113509 (2010)

  21. S. Mishra, N. Choudhury, S. Chaplot, P. Krishna, R. Mittal, Phys. Rev. B 76, 024110 (2007)

  22. H. Shimizu, H. Guo, S.E. Reyes-Lillo, Y. Mizuno, K.M. Rabe, C.A. Randall, Dalton T. 44, 10763–10772 (2015)

    Article  CAS  Google Scholar 

  23. S. Prasertpalichat, D.P. Cann, J. Electroceram. 33, 214–220 (2014)

    Article  CAS  Google Scholar 

  24. M. Zhou, R. Liang, Z. Zhou, S. Yan, X. Dong, ACS Sustain. Chem. Eng. 6, 12755–12765 (2018)

    Article  CAS  Google Scholar 

  25. S. Halder, K. Parida, S.N. Das, S. Bhuyan, R.N.P. Choudhary, J. Mater. Sci.: Mater. Electron. 28, 15928–15935 (2017)

    CAS  Google Scholar 

  26. L. Wu, X. Wang, Z. Shen, B. Luo, L. Li, J. Am. Ceram. Soc. 100, 511–514 (2017)

    Article  CAS  Google Scholar 

  27. T. Shao, H. Du, H. Ma et al., J. Mater. Chem. A 5, 554–563 (2017)

    Article  CAS  Google Scholar 

  28. D. Schütz, M. Deluca, W. Krauss, A. Feteira, T. Jackson, K. Reichmann, Adv. Funct. Mater. 22, 2285–2294 (2012)

    Article  Google Scholar 

  29. R. Shannon, R. Fischer, Phys. Rev. B 73, 235111 (2006)

  30. Y. Feng, J. Wu, Q. Chi, W. Li, Y. Yu, W. Fei, Chem. Rev. 120, 1710–1787 (2020)

    Article  CAS  Google Scholar 

  31. H. Guo, H. Shimizu, Y. Mizuno, C. Randall, J. Appl. Phys. 118, 054102 (2015)

  32. D. Sri Gyan, A. Goyal, Y. Tamrakar, A. Dwivedi, J. Phys. D: Appl. Phys. 52 (2019)

  33. Y. Fan, Z. Zhou, R. Liang, X. Dong, J. Eur. Ceram. Soc. 39, 4770–4777 (2019)

    Article  CAS  Google Scholar 

  34. J. Ye, G. Wang, M. Zhou et al., J. Mater. Chem. C 7, 5639–5645 (2019)

  35. J. Shi, X. Chen, C. Sun et al., Ceram. Int. 46, 25731–25737 (2020)

    Article  CAS  Google Scholar 

  36. R. Shi, Y. Pu, W. Wang, X. Guo, J. Li, M. Yang, S. Zhou, J. Alloys Compd. 815, 152356 (2020)

  37. Z. Yang, H. Du, S. Qu et al., J. Mater. Chem. A 4, 13778–13785 (2016)

    Article  CAS  Google Scholar 

  38. Q. Chai, D. Yang, X. Zhao, X. Chao, Z. Yang, J. Am. Ceram. Soc. 101, 2321–2329 (2018)

    Article  CAS  Google Scholar 

  39. K.J. Laidler, J. Chem. Educ. 61, 494–498 (1984)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the supports from the Special Funding Support for the Construction of Innovative Provinces in Hunan Province of China (No. 2020GK2062) and the National Natural Science Foundation of China (No. U19A2087 and 52172134), Xuefan Zhou (Postdoc) is particularly grateful for the support from the China National Postdoctoral Program for Innovative Talents (Grant No. BX2021377). Thanks also go to the State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuefan Zhou or Dou Zhang.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, G., Zhou, X. & Zhang, D. High energy storage, structure evolution and dielectric properties of complex perovskite solid solution (1-x) NaNbO3-xBi (Zn2/3Nb1/3) O3. J Electroceram 48, 111–116 (2022). https://doi.org/10.1007/s10832-022-00279-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-022-00279-6

Keywords

Navigation