Skip to main content
Log in

Tailoring the multiferroic properties of BiFeO3 by low energy ions implantation

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

This work presents the implantation of various ions, such as Au+, As+, Ge+, Y+, and Co+, to modify the structural parameters, surface morphology, and multiferroic properties of BiFeO3 (BFO) ceramics. All the samples were synthesized using the solid-state reaction method. Significant variations in the structural, morphological, ferroelectric, and ferromagnetic properties of BFO were observed due to the implantation of various ions using 500 keV at ion fluence of ~ 3 × 1012 ions/cm2. X-ray diffractometer patterns showed structural distortion in the implanted samples. Scanning Electron Microscopy (SEM) images exhibited definite grain size variation over the surface due to mass transport. The X-ray Photon Spectroscopy (XPS) indicated the successful implantation of all ions and revealed the impact of Fe2+/Fe3+ concentrations in irradiated samples. The magnetic and ferroelectric loops revealed the improved ferroelectric/ferromagnetic behaviour of BFO due to implantations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T.-H. Arima and Y. Tokura, Magnetic control of ferroelectric polarization. Nature. 426, 55 (2003)

  2. S. Wu, S.A. Cybart, D. Yi, J.M. Parker, R. Ramesh, R. Dynes, Full electric control of exchange bias. Phys. rev. lett. 110(2013)

  3. M. Matsuda, R. S. Fishman, T. Hong, C. Lee, T. Ushiyama, Y. Yanagisawa, Y. Tomioka, T. Ito, Magnetic dispersion and anisotropy in multiferroic BiFeO3. Phys. Rev. Lett. 109, 067205 (2012)

  4. L. Jing-Bo, R. Guang-Hui, X. Yin-Guo, L. Jun, L. Guang-Yao, C. Jing-Ran, L. Jing-Kui,Structure, dielectric and magnetodielectric properties of Bi1—xGdxFeO3 Ceramics. Chin. Phys. B. 19, 107505 (2010)

  5. S. Sharma, V. Singh, R. Dwivedi, Electrical properties of (1–x) BFO–(x) PZT multiferroics synthesized by sol-gel method: Transition from relaxor to non-relaxor. J. Alloys. Compd. 682, 723–729 (2016)

    Article  CAS  Google Scholar 

  6. S. Sharma, J. Siqueiros, G. Srinet, S. Kumar, B. Prajapati and R. Dwivedi, Structural, electrical, optical and dielectric properties of sol-gel derived (1− x) BiFeO3–(x) Pb (Zr0. 52Ti0. 48) O3 novel multiferroics materials. J. Alloys. Compd. 732, 666–673 (2018)

  7. S. Sharma and R. Dwivedi, Substitutionally driven phase transition and enhanced multiferroic and electrical properties of (1− x) BiFeO3–(x) Pb (Zr0. 52Ti0. 48) O3 ceramics (0.0≤ x≤ 1.00). J. Alloys. Compd. 692, 770–773 (2017)

  8. S. Ishiwata, Y. Tokunaga, Y. Taguchi and Y. Tokura, High-pressure hydrothermal crystal growth and multiferroic properties of a perovskite YMnO3. J Am Chem Soc. 133, 13818–13820 (2011)

  9. V. Atuchin, A. Aleksandrovsky, O. Chimitova, A. Krylov, M. Molokeev, B. Bazarov, J. Bazarova, Z. Xia, Synthesis and spectroscopic properties of multiferroic β′-Tb2 (MoO4) 3. Optical Materials. 36, 1631–1635 (2014)

    Article  CAS  Google Scholar 

  10. T. Shimada, T. Xu, Y. Uratani, J. Wang, T. Kitamura, Unusual multiferroic phase transitions in PbTiO3 nanowires. Nano Letters. 16, 6774–6779 (2016)

    Article  CAS  Google Scholar 

  11. V.R. Palkar, J. John, R. Pinto, Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO3 thin films. Appl. Phys. Lett. 80, 1628–1630 (2002)

    Article  CAS  Google Scholar 

  12. J. Li, J. Wang, M. Wuttig, R. Ramess, N. Wang, B. Ruette, Pyatakov A. P., Zvezdin A. K., and Viehland D. Appl. Phys. Lett. 84, 5261 (2004)

  13. Y. Heo, J.H. Lee, L. Xie, X. Pan, C.-H. Yang, J. Seidel, Enhanced conductivity at orthorhombic–rhombohedral phase boundaries in BiFeO 3 thin films. NPG Asia Materials. 8, e297–e297 (2016)

    Article  Google Scholar 

  14. G. Achenbach, W. James, R. Gerson, Preparation of single-phase polycrystalline BiFeO3. J. Am. Ceram. Soc. 50, 437–437 (1967)

    Article  CAS  Google Scholar 

  15. T. R. Paudel, S. S. Jaswal, E. Y. Tsymbal, Intrinsic defects in multiferroic BiFeO 3 and their effect on magnetism .Phys. Rev. B. 85, 104409 (2012)

  16. K. Jiang, J. Zhu, J. Wu, J. Sun, Z. Hu, J. Chu, Influences of oxygen pressure on optical properties and interband electronic transitions in multiferroic bismuth ferrite nanocrystalline films grown by pulsed laser deposition. ACS Applied Materials & Interfaces. 3, 4844–4852 (2011)

    Article  CAS  Google Scholar 

  17. F. Gao, X. Chen, K. Yin, S. Dong, Z. Ren, F. Yuan, T. Yu, Z. Zou, J.M. Liu, Visible-Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles. Adv. Mater. 19, 2889–2892 (2007)

    Article  CAS  Google Scholar 

  18. Y.-Q. Kang, M.-S. Cao, J. Yuan, X.-L. Shi, Microwave absorption properties of multiferroic BiFeO3 nanoparticles. Mater. Lett. 63, 1344–1346 (2009)

    Article  CAS  Google Scholar 

  19. X.L. Yu, Y. Wang, Y.M. Hu, C.B. Cao, H.L.W. Chan, Gas-Sensing Properties of Perovskite BiFeO3 Nanoparticles. J. Am. Ceram. Soc. 92, 3105–3107 (2009)

    Article  CAS  Google Scholar 

  20. N. A. Hill, Why are there so few magnetic ferroelectrics?, ACS Publications (2000)

  21. H. Béa, M. Gajek, M. Bibes, A. Barthélémy, Spintronics with multiferroics. J. Phys. Condens. Matter. 20, 434221 (2008)

  22. T.D. Rao, T. Karthik, S. Asthana, Investigation of structural, magnetic and optical properties of rare earth substituted bismuth ferrite. J. Rare. Earths. 31, 370–375 (2013)

    Article  CAS  Google Scholar 

  23. P. He, Z.-L. Hou, C.-Y. Wang, Z.-J. Li, J. Jing, S. Bi, Mutual promotion effect of Pr and Mg co-substitution on structure and multiferroic properties of BiFeO3 ceramic. Ceram. Int. 43, 262–267 (2017)

    Article  CAS  Google Scholar 

  24. J. Markna, R. Parmar, D. Rana, R. Kumar, P. Misra, L. Kukreja, D. Kuberkar, S. Malik, Effects of swift heavy ion irradiation on La0. 5Pr0. 2Sr0. 3MnO3 epitaxial thin films grown by pulsed laser deposition. Nucl. Instrum. Methods. Phys. Res. B. 256, 693–697 (2007)

  25. V. Atuchin, Causes of refractive indices changes in He-implanted LiNbO3 and LiTaO3 waveguides. Nucl. Instrum. Methods. Phys. Res. B. 168, 498–502 (2000)

    Article  CAS  Google Scholar 

  26. M.I. Current, Ion implantation of advanced silicon devices: Past, present and future. Materials Science in Semiconductor Processing. 62, 13–22 (2017)

    Article  CAS  Google Scholar 

  27. G. Alfieri, V. Sundaramoorthy, R. Micheletto, Deep levels in ion implanted n-type homoepitaxial GaN: Ion mass, tilt angle and dose dependence. Nucl. Instrum. Methods. Phys. Res. B. 490, 39–42 (2021)

    Article  CAS  Google Scholar 

  28. B. Sahu, R. Dey, P. Bajpai, Au3+ ion implantation on FTO coated glasses: Effect on structural, electrical, optical and phonon properties. Nucl. Instrum. Methods. Phys. Res. B. 400, 11–21 (2017)

    Article  CAS  Google Scholar 

  29. D. Kanjilal,  Swift heavy ion-induced modification and track formation in materials. Current Science. 1560–1566 (2001)

  30. S. Miro, G. Velisa, L. Thomé, P. Trocellier, Y. Serruys, A. Debelle, F. Garrido, Monitoring by Raman spectroscopy of the damage induced in the wake of energetic ions. J. Raman. Spectrosc. 45, 481–486 (2014)

    Article  CAS  Google Scholar 

  31. R. Dey, P. Bajpai, Au5+ ion implantation induced structural phase transitions probed through structural, microstructural and phonon properties in BiFeO3 ceramics, using synergistic ion beam energy. Radiation Effects and Defects in Solids. 173, 283–299 (2018)

    Article  CAS  Google Scholar 

  32. S. Ogale, Y. Li, M. Rajeswari, L. S. Riba, R. Ramesh, T. Venkatesan, A. Millis, R. Kumar, G. Mehta, R. Bathe, Columnar defect induced phase transformation in epitaxial La 0.7 Ca 0.3 MnO 3 films. J. Appl. Phys. 87, 4210–4215 (2000)

  33. C. Houpert, F. Studer, D. Groult, M. Toulemonde, Transition from localized defects to continuous latent tracks in magnetic insulators irradiated by high energy heavy ions: A HREM investigation. Nucl. Instrum. Methods. Phys. Res. B. 39, 720–723 (1989)

    Article  Google Scholar 

  34. A. Paliwal, S. Sharma, M. Tomar, F. Singh, V. Gupta, Refractive index dispersion of swift heavy ion irradiated BFO thin films using Surface Plasmon Resonance technique. Nucl. Instrum. Methods. Phys. Res. B. 379, 126–130 (2016)

    Article  CAS  Google Scholar 

  35. B. Dash, P. Dash, H. Rath, P. Mallick, R. Biswal, P. Kulriya, N. Mishra, Swift heavy ion irradiation induced modification of BiFeO 3 thin films prepared by sol-gel method. Indian. J. Phys. 84, 1315–1320 (2010)

    Article  CAS  Google Scholar 

  36. A. Ravalia, M. Vagadia, P. Solanki, S. Gautam, K. Chae, K. Asokan, N. Shah, D. Kuberkar, Role of defects in BiFeO3 multiferroic films and their local electronic structure by x-ray absorption spectroscopy. J. Appl. Phys.  116, 153701 (2014)

  37. M. Lang, F. Zhang, R. Ewing, J. Lian, C. Trautmann, Z. Wang, Structural modifications of Gd 2 Zr 2–x Ti x O 7 pyrochlore induced by swift heavy ions: disordering and amorphization. J. Mater. Res. 24, 1322–1334 (2009)

    Article  CAS  Google Scholar 

  38. C.C. Li, L.B. Chen, Q.H. Li, T.H. Wang, Seed-free, aqueous synthesis of gold nanowires. Cryst. Eng. Comm. 14, 7549–7551 (2021)

    Article  CAS  Google Scholar 

  39. B. Kidyarov, V. Atuchin, Universal crystal classification system “Point symmetry–Physical property.” Ferroelectrics. 360, 96–99 (2007)

    Article  CAS  Google Scholar 

  40. O. Diéguez, O. González-Vázquez, J. C. Wojdeł, J. Íñiguez, First-principles predictions of low-energy phases of multiferroic BiFeO3. Phys. Rev. B. 83, 094105 (2011)

  41. Y.K. Jeong, C.W. Bark, S. Ryu, J.-H. Lee, H.M. Jang, R3c–R3m octahedron-tilting transition in rhombohedrally-distorted BiFeO3 multiferroics. J. Korean. Phys. Soc. 58, 817–820 (2011)

    Article  CAS  Google Scholar 

  42. X. Xi, S. Wang, W. Liu, H. Wang, F. Guo, X. Wang, J. Gao, D. Li, Enhanced magnetic and conductive properties of Ba and Co co-doped BiFeO3 ceramics. J. Magn. Magn. Mater. 355, 259–264 (2014)

    Article  CAS  Google Scholar 

  43. A.K. Vishwakarma, P. Tripathi, A. Srivastava, A. Sinha, O. Srivastava, Band gap engineering of Gd and Co doped BiFeO3 and their application in hydrogen production through photoelectrochemical route. Int. J. Hydro. En. 42, 22677–22686 (2017)

    Article  CAS  Google Scholar 

  44. A. Jaiswal, R. Das, K. Vivekanand, P. Mary Abraham, S. Adyanthaya, P. Poddar, Effect of reduced particle size on the magnetic properties of chemically synthesized BiFeO3 nanocrystals. J. Phys. Chem. C. 114, 2108–2115 (2010)

  45. S. Mazen, N. Abu-Elsaad, Characterization and magnetic investigations of germanium-doped lithium ferrite. Ceram. Int. 40, 11229–11237 (2014)

    Article  CAS  Google Scholar 

  46. S. Mohapatra, B. Sahu, M. Chandrasekhar, P. Kumar, S. Kaushik, S. Rath, A. Singh, Effect of cobalt substitution on structural, impedance, ferroelectric and magnetic properties of multiferroic Bi2Fe4O9 ceramics. Ceram. Int. 42, 12352–12360 (2016)

    Article  CAS  Google Scholar 

  47. V. Singh, S. Sharma, P. K. Jha, M. Kumar, R. Dwivedi, Effect of Y3+ substitution on structural, electrical and optical properties of BiFeO3 ceramics. Ceram. Int. 40, 1971–1977 (2014)

  48. T. A. Anjum, M. Naveed-Ul-Haq, S. Hussain, M. Rafique,  Analyses of structure, electronic and multiferroic properties of Bi1-xNdxFeO3 (x= 0, 0.05, 0.10, 0.15, 0.20, 0.25) system. J. Alloys. Comp. 820, 153095 (2020)

  49. M.M. Haque, M. Huq, M. Hakim, Influence of CuO and sintering temperature on the microstructure and magnetic properties of Mg–Cu–Zn ferrites. J. Magn. Magn. Mater. 320, 2792–2799 (2008)

    Article  CAS  Google Scholar 

  50. S. Watawe, B. Sarwade, S. Bellad, B. Sutar, B. Chaugule, Microstructure and magnetic properties of Li-Co ferrites. Mater. Chem. Phys. 65, 173–177 (2000)

    Article  CAS  Google Scholar 

  51. D. Kuang, P. Tang, X. Ding, S. Yang, Y. Zhang, Effects of Y doping on multiferroic properties of sol–gel deposited BiFeO 3 thin films. J. Mater. Sci. Mater. Electron. 26, 3001–3007 (2015)

    Article  CAS  Google Scholar 

  52. T. Rojac, A. Bencan, B. Malic, G. Tutuncu, J. L. Jones, J. E. Daniels, D. Damjanovic, BiFeO3 ceramics: processing, electrical, and electromechanical properties. J. Am. Ceram. Soc. 97, 1993–2011 (2014)

  53. G. Song, J. Su, G. Ma, T. Wang, H. Yang, F. Chang, Effects of trivalent gadolinium and cobalt co-substitution on the crystal structure, electronic transport, and ferromagnetic properties of bismuth ferrite. Mater. Sci. Semicond. Process. 27, 899–908 (2014)

    Article  CAS  Google Scholar 

  54. S. Mandal, C. Ghosh, D. Sarkar, U. Maiti, K. Chattopadhyay, X-ray photoelectron spectroscopic investigation on the elemental chemical shifts in multiferroic BiFeO3 and its valence band structure. Solid State Sciences. 12, 1803–1808 (2021)

    Article  CAS  Google Scholar 

  55. V. V. Atuchin, V. G. Kesler, N. V. Pervukhina, Z. Zhang, Ti 2p and O1s core levels and chemical bonding in titanium-bearing oxides. J. Electron. Spectros. Relat. Phenomena. 152, 18–24 (2006)

  56. V. Atuchin, J.-C. Grivel, A. Korotkov, Z. Zhang, Electronic parameters of Sr2Nb2O7 and chemical bonding. J. Sol. Stat. Chem. 181, 1285–1291 (2008)

    Article  CAS  Google Scholar 

  57. V.V. Atuchin, E.N. Galashov, O.Y. Khyzhun, A.S. Kozhukhov, L.D. Pokrovsky, V.N. Shlegel, Structural and electronic properties of ZnWO4 (010) cleaved surface. Crystal Growth & Design. 11, 2479–2484 (2011)

    Article  CAS  Google Scholar 

  58. L. Wei, Z. Li and W. Zhang,  Influence of Co doping content on its valence state in Zn1− xCoxO (0≤ x≤ 0.15) thin films. Appl. Surf. Scien. 255, 4992–4995 (2009)

  59. M. Casaletto, A. Longo, A. Martorana, A. Prestianni, A. Venezia, XPS study of supported gold catalysts: the role of Au0 and Au+ δ species as active sites. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, Interfaces and Thin Films. 38, 215–218 (2006)

    Article  CAS  Google Scholar 

  60. L. Fang, J. Liu, S. Ju, F. Zheng, W. Dong, M. Shen, Experimental and theoretical evidence of enhanced ferromagnetism in sonochemical synthesized BiFeO 3 nanoparticles. Appl. Phys. Lett. 97, 242501 (2010)

  61. Z. Quan, H. Hu, S. Xu, W. Liu, G. Fang, M. Li, X. Zhao, Surface chemical bonding states and ferroelectricity of Ce-doped BiFeO3 thin films prepared by sol–gel process. J. Solgel. Sci. Techno. 48, 261–266 (2008)

  62. S.-T. Zhang, G. Vitrant, E. Pernot, C. Jiménez, D. Muñoz-Rojas, D. Bellet, Hazy Al2O3-FTO Nanocomposites: A Comparative Study with FTO-Based Nanocomposites Integrating ZnO and S: TiO2 Nanostructures. Nanomaterials. 8, 440 (2018)

  63. Y. Yoneda, Y. Kitanaka, Y. Noguchi, M. Miyayama, Electronic and local structures of Mn-doped BiFeO 3 crystals. Phys. Rev. B. 86, 184112 (2012)

  64. P. Suresh, S. Srinath, Effect of synthesis route on the multiferroic properties of BiFeO3: a comparative study between solid state and sol–gel methods. J. Alloys. Comp. 649, 843–850 (2015)

    Article  CAS  Google Scholar 

  65. Z. Chai, G. Tan, Z. Yue, W. Yang, M. Guo, H. Ren, A. Xia, M. Xue, Y. Liu, L. Lv, Ferroelectric properties of BiFeO3 thin films by Sr/Gd/Mn/Co multi-doping. J. Alloys. Compd. 746, 677–687 (2018)

    Article  CAS  Google Scholar 

  66. V.V. Atuchin, D. Vinnik, T. Gavrilova, S. Gudkova, L. Isaenko, X. Jiang, L. Pokrovsky, I. Prosvirin, L. Mashkovtseva, Z. Lin, Flux crystal growth and the electronic structure of BaFe12O19 hexaferrite. J. Phys. Chem. C. 120, 5114–5123 (2016)

    Article  CAS  Google Scholar 

  67. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Advanced Materials. 21, 2463–2485 (2009)

    Article  CAS  Google Scholar 

  68. C. Sree Rama Linga Prasad, G. Sreenivasulu, S. Roopas Kiran, M. Balasubramanian, B. Murty, Electrical and magnetic properties of nanocrystalline BiFeO3 prepared by high energy ball milling and microwave sintering. J. Nanoscie. Nanotechnol. 11, 4097–4102 (2011)

  69. A. K. Pradhan, K. Zhang, D. Hunter, J. Dadson, G. Loiutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. Roy, Magnetic and electrical properties of single-phase multiferroic BiFeO 3. J. Appl. Phys. 97, 093903 (2005)

  70. S. Sharma, V. Singh, R. Kotnala, R. K. Dwivedi, Comparative studies of pure BiFeO3 prepared by sol–gel versus conventional solid-state-reaction method. Journal of Materials Science: Materials in Electronics. 25, 1915–1921 (2014)

  71. S.-H. Song, Q.-S. Zhu, L.-Q. Weng, V. Mudinepalli, A comparative study of dielectric, ferroelectric and magnetic properties of BiFeO3 multiferroic ceramics synthesized by conventional and spark plasma sintering techniques. J. Eur. Ceram. Soc. 35, 131–138 (2015)

    Article  CAS  Google Scholar 

  72. A. Kumar, D. Varshney, Crystal structure refinement of Bi1− xNdxFeO3 multiferroic by the Rietveld method. Ceram. Int. 38, 3935–3942 (2012)

    Article  CAS  Google Scholar 

  73. A. Ravalia, B. Kataria, S. Katba, S. Jethva, M. Vagadia, K. Asokan, S. Gautam, K.H. Chae, D. Kuberkar, Electronic excitation induced modifications in the ferroelectric polarization of BiFeO3 thin films. Vacuum. 155, 572–577 (2018)

    Article  CAS  Google Scholar 

  74. A. Singh, S. Kaushik, B. Kumar, P. Mishra, A. Venimadhav, V. Siruguri, S. Patnaik, Substantial magnetoelectric coupling near room temperature in Bi 2 Fe 4 O 9. Appl. Phys. Lett. 92, 132910 (2008)

  75. V. Khomchenko, D. Kiselev, J. Vieira, L. Jian, A. Kholkin, A. Lopes, Y. Pogorelov, J. Araujo M. Maglione, Effect of diamagnetic Ca, Sr, Pb, and Ba substitution on the crystal structure and multiferroic properties of the BiFeO 3 perovskite. J. Appl. Phys. 103, 024105 (2008)

  76. S. Jangra, S. Sanghi, A. Agarwal, M. Rangi, K. Kaswan, S. Khasa, Improved structural, dielectric and magnetic properties of Ca2+ and Nb5+ co-substituted BiFeO3 multiferroics. Journal of Alloys and Compounds. 722, 606–616 (2017)

    Article  CAS  Google Scholar 

  77. R. Gotardo, E. Silva, D. Montanher, G. Santos, K. Silva, L. Cótica, I. Santos, R. Guo, A. Bhalla, Improved magnetic properties and structural characterizations in Mn doped 0.9 BiFeO3–0.1 BaTiO3 compositions. Scripta Materialia. 130, 161–164 (2017)

  78. N. Liu, R. Liang, Z. Liu, Z. Zhou, C. Xu, G. Wang, X. Dong, Large remanent polarization and enhanced magnetic properties in non-quenched Bi (Fe, Ga) O3-(Ba, Ca)(Zr, Ti) O3 multiferroic ceramics. Appl. Phys. Lett. 110, 112902 (2017)

  79. Reetu, A. Agarwal, S. Sanghi, Ashima, Rietveld analysis, dielectric and magnetic properties of Sr and Ti codoped BiFeO3 multiferroic. J. Appl. Phys. 110, 073909 (2011)

  80. C. Ederer, N. A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B. 71, 060401 (2005)

  81. M. Luo, P. Zhou, Y. Liu, X. Wang, J. Xie, Influence of Y-doping on structure, microwave dielectric and magnetic behaviors in BiFeO3. Physica B: Condensed Matter. 450, 1–6 (2014)

    Article  CAS  Google Scholar 

  82. I. Sosnowska, W. Schäfer, W. Kockelmann, K. Andersen, I. Troyanchuk, Crystal structure and spiral magnetic ordering of BiFeO 3 doped with manganese. Appl. Phys. A, 74, s1040-s1042 (2002)

  83. P. Godara, A. Agarwal, N. Ahlawat, S. Sanghi, R. Dahiya, Crystal structure transformation, dielectric and magnetic properties of Ba and Co modified BiFeO3 multiferroic. J. Alloys. Compd. 594, 175–181 (2014)

    Article  CAS  Google Scholar 

  84. A. Marzouki, H. Harzali, V. Loyau, P. Gemeiner, K. Zehani, B. Dkhil, L. Bessais, A. Megriche, Large magnetoelectric response and its origin in bulk Co-doped BiFeO3 synthesized by a stirred hydrothermal process. Acta Mater. 145, 316–321 (2018)

    Article  CAS  Google Scholar 

  85. H. Uchida, R. Ueno, H. Funakubo, S. Koda, Crystal structure and ferroelectric properties of rare-earth substituted Bi Fe O 3 thin films. J. Appl. Phys. 100, 014106 (2006)

  86. G.G. Philip, A. Senthamizhan, T.S. Natarajan, G. Chandrasekaran, H.A. Therese, The effect of gadolinium doping on the structural, magnetic and photoluminescence properties of electrospun bismuth ferrite nanofibers. Ceram. Int. 41, 13361–13365 (2015)

    Article  CAS  Google Scholar 

  87. J. Wei, M. Zhang, H. Deng, S. Chu, M. Du, H. Yan, Effect of Cr doping on ferroelectric and magnetic properties of Bi0.8Ba0.2FeO3. Ceram. Int. 41, 8665–8669 (2015)

Download references

Acknowledgements

The authors extend their appreciation to the Researchers Supporting Project number (RSP-2021/394), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Murtaza.

Ethics declarations

Conflict of interest statement

Authors declare that there is no conflict of interest regarding financial, ethical, human and animal rights. All procedure for experiments followed were in accordance with the ethical standard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, S., Murtaza, G., Khan, M.A. et al. Tailoring the multiferroic properties of BiFeO3 by low energy ions implantation. J Electroceram 47, 100–117 (2021). https://doi.org/10.1007/s10832-021-00258-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-021-00258-3

Keywords

Navigation