Skip to main content
Log in

Action potential initiation in a multi-compartmental model with cooperatively gating Na channels in the axon initial segment

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Somatic action potentials (AP) of cortical pyramidal neurons have characteristically high onset-rapidness. The onset of the AP waveform is an indirect measure for the ability of a neuron to respond to temporally fast-changing stimuli. Theoretical studies on the pyramidal neuron response usually involves a canonical Hodgkin-Huxley (HH) type ion channel gating model, which assumes statistically independent gating of each individual channel. However, cooperative activity of ion channels are observed for various cell types, meaning that the activity (e.g. opening) of one channel triggers the activity (e.g. opening) of a certain fraction of its neighbors and hence, these groups of channels behave as a unit. In this study, we describe a multi-compartmental conductance-based model with cooperatively gating voltage-gated Na channels in the axon initial segment. Our model successfully reproduced the somatic sharp AP onsets of cortical pyramidal neurons. The onset latencies from the initiation site to the soma and the conduction velocities were also in agreement with the previous experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Almers, W., & Stirling, C. (1984). Distribution of transport proteins over animal cell membranes. The Journal of Membrane Biology, 77(3), 169–186.

    Article  CAS  PubMed  Google Scholar 

  • Angelides, K., Elmer, L., Loftus, D., & Elson, E. (1988). Distribution and lateral mobility of voltage-dependent sodium channels in neurons. The Journal of Cell Biology, 106(6), 1911–1925.

    Article  CAS  PubMed  Google Scholar 

  • Baranauskas, G., & Martina, M. (2006). Sodium currents activate without a hodgkin-and-huxley-type delay in central mammalian neurons. The Journal of Neuroscience, 26, 671–684.

    Article  CAS  PubMed  Google Scholar 

  • Baranauskas, G., Mukovskiy, A., Wolf, F., & Volgushev, M. (2010). The determinants of the onset dynamics of action potentials in a computational model. Neuroscience, 167(4), 1070–1090.

    Article  CAS  PubMed  Google Scholar 

  • Bekkers, J., & Hauser, M. (2007). Targeted dendrotomy reveals active and passive contributions of the dendritic tree to synaptic integration and neuronal output. Proc Nal Acad Sci USA, 104, 11, 447–11, 452.

    Article  CAS  Google Scholar 

  • Boucsein, C., Tetzlaff, T., Meier, R., Aertsen, A., & Naundorf, B. (2009). Dynamical response properties of neocortical neuron ensembles: multiplicative versus additive noise. The Journal of Neuroscience, 29(4), 1006–1010.

    Article  CAS  PubMed  Google Scholar 

  • Brette, R. (2013). Sharpness of spike initiation in neurons explained by compartmentalization. Plos Comput Biol, 9(12), e1003, 338.

    Article  Google Scholar 

  • Colbert, C., & Johnston, D. (1996). Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. The Journal of Neuroscience, 16(21), 6676–6686.

    CAS  PubMed  Google Scholar 

  • Colbert, C., & Pan, E. (2002). Ion channel properties underlying axonal action potential initiation in pyramidal neurons. Nature Neuroscience, 5, 533–538.

    Article  CAS  PubMed  Google Scholar 

  • Dekker, J., & Yellen, G. (2006). Cooperative gating between single hcn pacemaker channels. The Journal of General Physiology, 128(5), 561–567.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dixon, R.E., Yuan, C., Cheng, E.P., NAvedo, M.F., & Santana, L.F. (2012). Ca2+ signaling amplification by oligomerization of l-type cav1.2 channels. Proc Nal Acad Sci, 109(5), 1749–1754.

    Article  CAS  Google Scholar 

  • Doyle, D., Cabral, J.M., Pfuetzner, R., Kuo, A., Gulbis, J., Cohen, S., Chait, B., & MacKinnon, R. (1998). The structure of the potassium channel: molecular basis of k+ conduction and selectivity. Science, 280 (5360), 69–77.

    Article  CAS  PubMed  Google Scholar 

  • Dzhashiashvili, Y., Zhang, Y., Galinska, J., Lam, I., Grumet, M., & Salzer, J. (2007). Nodes of ranvier and axon initial segments are ankyrin-g-dependent domans that assemble by distinct mechanisms. The Journal of Cell Biology, 177, 857–870.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ermentrout, B., Pascal, M., & Gutkin, B. (2001). The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators. Neural Computation, 13, 1285–1310.

    Article  CAS  PubMed  Google Scholar 

  • Eyal, G., Mansvelder, H., de Kock C., & Segev, I. (2014). Dendrites impact the encoding capabilities of the axon. The Journal of Neuroscience, 34(24), 8063–8071.

    Article  CAS  PubMed  Google Scholar 

  • Fleidervish, I., Lasser-Ross, N., Gutnick, M., & Ross, W. (2010). Na+ imaging reveals little difference in action potential-evoked Na+ influx between axon and soma. Nature Neuroscience, 13(7), 852–860.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fourcaud-Trocme, N., & Brunel, N. (2005). Dynamics of the instantaneous firing rate in response to changes in input statistics. Journal of Computational Neuroscience, 18(3), 311–321.

    Article  PubMed  Google Scholar 

  • Fourcaud-Trocme, N., Hansel, D., van Vreeswijk, C., & Brunel, N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating inputs. The Journal of Neuroscience, 23(37), 11, 628–11, 640.

    CAS  Google Scholar 

  • Gabelli, S.B., Boto, A., Kuhns, V.H., Bianchet, M.A., Farinelli, F., Aripala, S., Yoder, J., Jakoncic, J., Tomaselli, G.F., & Amzel, L.M. (2014). Regulation of the nav1.5 cytoplasmic domain by calmodulin. Nature Communications, 5, 5126.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grubb, M., & Burrone, J. (2010). Building and maintaining the axon initial segment. Current Opinion in Neurobiology, 20(4), 481–488.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Häusser, M., Stuart, G., Racca, C., & Sakmann, B. (1995). Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron, 15(3), 637–647.

    Article  PubMed  Google Scholar 

  • Hay, E., Schrmann, F., Markram, H., & Segev, I. (2013). Preserving axosomatic spiking features despite diverse dendritic morphology. Journal of Neurophysiology, 109, 2972–2981.

    Article  PubMed  Google Scholar 

  • Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu, W., Tian, C., Li, T., Yang, M., Hou, H., & Shu, Y. (2009). Distinct contributions of na(v)1.6 and na(v)1.2 in action potential initiation and backpropagation. Nature Neuroscience, 12(8), 996– 1002.

    Article  CAS  PubMed  Google Scholar 

  • Huang, H. (2006). Molecular mechanism of antimicrobial peptides: the origin of cooperativity. Biochimica et Biophysica Acta, 1758(9), 1292–1302.

    Article  CAS  PubMed  Google Scholar 

  • Huang, M., Volgushev, M., & Wolf, F. (2012). A small fraction of strongly cooperative sodium channels boosts neuronal encoding of high frequencies. PLoS One, 7, e37629.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kole, M., & Stuart, G. (2008). Action potential generation requires a high sodium channel density in the axon initial segment. Nature Neuroscience, 11(11), 1253–1255.

    Article  CAS  PubMed  Google Scholar 

  • Kole, M., Ilschner, S., Kampa, B., Williams, S., Ruben, P., & Stuart, G. (2008). Is action potential threshold lowest in the axon? Nature Neuroscience, 11, 178–186.

    Article  CAS  PubMed  Google Scholar 

  • Köndgen, H., Geisler, C., Fusi, S., Wang, X., Lüscher, H., & Giugliano, M. (2008). The dynamical response properties of neocortical neurons to temproally modulated noisy inputs in vitro. Cerebral Cortex, 18(9), 2086–2097.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mainen, Z., Joerges, J., Huguenard, J., & Sejnowski, T.A. (1995). model of spike initiation in neocortical pyramidal neurons. Neuron, 15(6), 1427–1439.

    Article  CAS  PubMed  Google Scholar 

  • Marx, S., Ondrias, K., & Marks, A. (1998). Coupled gating between individual skeletal muscle ca2+ release channels (ryanodine receptors). Science, 281(5378), 818–821.

    Article  CAS  PubMed  Google Scholar 

  • Marx, S. O., Gaburjakova, J., Gaburjakova, M., Henrikson, C., Ondrias, K., & Marks, A. R. (2001). Coupled gating between cardiac calcium release channels (ryanodine receptors). Circulation Research, 88, 1151–1158.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, D., Shu, Y., & Yu, Y (2007). Neurophysiology: Hodgkin and huxley model - still standing?. Nature, 445, 1–2.

    Article  Google Scholar 

  • Molina, M., Barrera, F., Fernàndez, A., Poveda, J., Renart, M., Encinar, J., Riquelme, G., & Gonzàlez-Ros, J. (2006). Clustering and coupled gating modulate the activity in kcsa, a potassium channel model. The Journal of Biological Chemistry, 281(27), 18, 837–18, 848.

    Article  CAS  Google Scholar 

  • Naundorf, B., Geisel, T., & Wolf, F. (2005a). Action potential onset dynamics and the response speed of neuronal populations. Journal of Computational Neuroscience, 18, 297–309.

    Article  CAS  PubMed  Google Scholar 

  • Naundorf, B., Geisel, T., & Wolf, F. (2005b). Dynamical response properties of a canonical model for type-i membranes. Neurocomputing, 20, 421–428.

    Article  Google Scholar 

  • Naundorf, B., Wolf, F., & Volgushev, M. (2006). Unique features of action potential initiation in cortical neurons. Nature, 440(7087), 1060–1063.

    Article  CAS  PubMed  Google Scholar 

  • Naundorf, B., Wolf, F., & Volgushev, M. (2007). reply to: hodgkin-huxley model – still standing?. Nature, 445, E2–E3.

    Article  Google Scholar 

  • Neumcke, B., & Stämpfli, R. (1983). Alteration of the conductance of Na+ channels in the nodal membrane of frog nerve by holding potential and tetrodotoxin. Biochimica et Biophysica Acta, 727(1), 177–184.

    Article  CAS  PubMed  Google Scholar 

  • Palmer, L., & Stuart, G. (2006). Site of action potential initiation in layer 5 pyramidal neurons. The Journal of Neuroscience, 26, 1854–1863.

    Article  CAS  PubMed  Google Scholar 

  • Post, J., Leunissen-Bijvelt, J., Ruigrok, T., & Verkleij, A. (1985). Ultrastructural changes of sarcolemma and mitochondria in the isolated rabbit heart during ischemia and reperfusion. Biochimica et Biophysica Acta, 845 (1), 119–123.

    Article  CAS  PubMed  Google Scholar 

  • Saito, A., Inui, M., Radermacher, M., Frank, J., & Fleischer, S. (1988). Ultrastructure of the calcium release channel of sarcoplasmic reticulum. The Journal of Cell Biology, 107(1), 211–219.

    Article  CAS  PubMed  Google Scholar 

  • Schafer, D., Jha, S., Liu, F., Akella, T., McCullogh, L., & Rasband, M. (2009). Disruption of axon initial segment cytoskeleton is a new mechanism for neuronal injury. The Journal of Neuroscience, 29(42), 13, 242–13, 254.

    Article  CAS  Google Scholar 

  • Shu, Y., Duque, A., Yu, Y., Haider, B., & McCormick, D. (2007). Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings. Journal of Neurophysiology, 97(1), 746–760.

    Article  PubMed  Google Scholar 

  • Silberberg, S., & Magleby, K. (1997). Voltage-induced slow activation and deactivation of mechanosensitive channels in xenopus oocytes. The Journal of Physiology, 505(Pt 3), 551–569.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sonkusare, S.K., Dalsgaard, Bonev, A.D., Hill-Eubanks, D.C., Kotlikoff, M.I., Scott, J.D., Santana, L.F., & Nelson, M.T. (2014). Akap150-dependent cooperative trpv4 channel gating is central to endothelium-dependent vasodilation and is disrupted in hypertension. Science Signaling, 7(333), ra66.

    Article  PubMed Central  PubMed  Google Scholar 

  • Stuart, G., & Schiller, J. (1997). Sakmann B Action potential initiation and propagation in rat neocortical pyramidal neurons. The Journal of Physiology, 505, 617–632.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Undrovinas, A., & Makielski, I.F.J. (1992). Inward sodium current at resting potentials in single cardiac myocytes induced by the ischemic metabolite lysophosphatidylcholine. Circulation Research, 71(5), 1231–1241.

    Article  CAS  PubMed  Google Scholar 

  • Ursell, T., Huang, K., Peterson, E., & Phillips, R. (2007). Cooperative gating and spatial organization of membrane proteins through elastic interactions. PLoS Computational Biology, 3(5), e81.

    Article  PubMed Central  PubMed  Google Scholar 

  • Volgushev, M., Malyshev, A., Balaban, P., Chistiakova, M., & Volgushev, S. (2008). Wolf F Onset dynamics of action potentials in rat neocortical neurons and identified snail neurons : quantification of the difference. PLoS ONE, e1962, 3.

    Google Scholar 

  • Wang, X., & Buzsàki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. The Journal of Neuroscience, 16, 6402–6413.

    CAS  PubMed  Google Scholar 

  • Wei, W., & Wolf, F. (2011). Spike onset dynamics and response speed in neuronal populations. Physical Review Letters, 106(8), 088, 102.

    Article  Google Scholar 

  • Wiesenfeld, K., & Moss, F. (1995). Stochastic resonance and the benefits of noise: from ice ages to crayfish and squids. Nature, 73(6509), 33–36.

    Article  Google Scholar 

  • Yu, Y., Shu, Y., & McCormick, D. (2008). Cortical action potential backpropogation explains spike threshold variability and rapid-onset kinetics. The Journal of Neuroscience, 28, 7260–7272.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank A. Neef, M. Monteforte, W.Wei and M. Gutnick for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinar Öz.

Additional information

Action Editor: Alain Destexhe

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öz, P., Huang, M. & Wolf, F. Action potential initiation in a multi-compartmental model with cooperatively gating Na channels in the axon initial segment. J Comput Neurosci 39, 63–75 (2015). https://doi.org/10.1007/s10827-015-0561-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-015-0561-9

Keywords

Navigation