Skip to main content
Log in

Energy-based stochastic control of neural mass models suggests time-varying effective connectivity in the resting state

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Several studies posit energy as a constraint on the coding and processing of information in the brain due to the high cost of resting and evoked cortical activity. This suggestion has been addressed theoretically with models of a single neuron and two coupled neurons. Neural mass models (NMMs) address mean-field based modeling of the activity and interactions between populations of neurons rather than a few neurons. NMMs have been widely employed for studying the generation of EEG rhythms, and more recently as frameworks for integrated models of neurophysiology and functional MRI (fMRI) responses. To date, the consequences of energy constraints on the activity and interactions of ensembles of neurons have not been addressed. Here we aim to study the impact of constraining energy consumption during the resting-state on NMM parameters. To this end, we first linearized the model, then used stochastic control theory by introducing a quadratic cost function, which transforms the NMM into a stochastic linear quadratic regulator (LQR). Solving the LQR problem introduces a regime in which the NMM parameters, specifically the effective connectivities between neuronal populations, must vary with time. This is in contrast to current NMMs, which assume a constant parameter set for a given condition or task. We further simulated energy-constrained stochastic control of a specific NMM, the Wilson and Cowan model of two coupled neuronal populations, one of which is excitatory and the other inhibitory. These simulations demonstrate that with varying weights of the energy-cost function, the NMM parameters show different time-varying behavior. We conclude that constraining NMMs according to energy consumption may create more realistic models. We further propose to employ linear NMMs with time-varying parameters as an alternative to traditional nonlinear NMMs with constant parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aiello, L. C., & Wheeler, P. (1995). The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Current Anthropology, 36, 199–221.

    Article  Google Scholar 

  • Alle, H., Roth, A., & Geiger, J. R. (2009). Energy-efficient action potentials in hippocampal mossy fibbers. Science, 325, 1405–1408.

    Article  PubMed  CAS  Google Scholar 

  • Ames, A. (2000). CNS energy metabolism as related to function. Brain Research Reviews, 34, 42–68.

    Article  PubMed  CAS  Google Scholar 

  • Attwell, D., & Iadecola, C. (2002). The neural basis of functional brain imaging signals. Trends in Neurosciences, 25, 621–625.

    Google Scholar 

  • Babajani, A., & Soltanian-Zadeh, H. (2006). Integrated MEG/EEG and fMRI model based on neural masses. IEEE Transactions on Biomedical Engineering, 53, 1794–1801.

    Article  PubMed  Google Scholar 

  • Balasubramanian, V., Kimber, D., & Berry, M. J., II. (2001). Metabolically efficient information processing. Neural Computation, 13, 799–815.

    Article  PubMed  CAS  Google Scholar 

  • Bennet, M. R., & Kearns, J. L. (2000). Statistics of synaptic release at nerve terminals. Progress in Neurobiology, 60, 545–606.

    Article  Google Scholar 

  • Blomquist, P., Devor, A., Indahl, U. G., Ulbert, I., Einevoll, G. T., & Dale, A. M. (2009). Estimation of thalamocortical and intracortical network models from joint thalamic single-eletrode and cortical laminar-electrode recordings in the rat barrel system. PLoS Computational Biology, 5, e1000328.

    Article  PubMed  Google Scholar 

  • Brock, O., & Kavraki, L. (2001). Decomposition based motion planning: a framework for real time motion planning in high-dimensional configuration spaces. In IEEE International Conference on Robotics and Automation, 2, 1469–1474.

    Google Scholar 

  • Chen, S., Li, X., & Zhou, X. Y. (1998). Stochastic linear quadratic regulators with indefinite control weight costs. SIAM Journal on Control and Optimization, 36, 1685–1702.

    Article  Google Scholar 

  • Chen, X., & Zhou, Y. (2004). Stochastic linear-quadratic control with conic control constraints on an infinite time horizon. SIAM Journal on Control and Optimization, 43, 1120–1150.

    Article  Google Scholar 

  • Chklovskii, D. B., & Koukalov, A. A. (2004). Maps in the brain: what can we learn from them? Annual Review of Neuroscience, 27, 369–392.

    Article  PubMed  CAS  Google Scholar 

  • Çimen, T. (2008). State-dependent Riccati equation (SDRE) control: A survey. In: Proc. of the 17th IFAC World Congress, Seoul, South Korea.

  • Clarke, D. D., & Sokoloff, L. (1999) Circulation and energy metabolism of the brain. In Agranoff, B. W., & Siegel, G. J. (eds), Basic neurochemistry. Molecular, cellular and medical aspects (6th edn) (pp. 637–670). Lippincott-Raven.

  • David, O., & Friston, K. J. (2003). A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage, 20, 1743–1755.

    Article  PubMed  Google Scholar 

  • Deco, G., Jirsa, V. K., Robinson, P. A., Breakspear, M., & Friston, K. (2008). The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Computational Biology, 4, e1000092.

    Article  PubMed  Google Scholar 

  • Faugeras, O., Veltz, R., & Grimbert, F. (2009). Persistent neural states: stationary localized activity patterns in nonlinear continuous n-population, q-dimensional neural networks. Neural Computation, 21, 147–187.

    Article  PubMed  Google Scholar 

  • Feng, J., & Tuckwell, H. C. (2003). Optimal control of neuronal activity. Physical Review Letters, 91, 018101.

    Article  PubMed  Google Scholar 

  • Freeman, W. J. (1975). Mass action in the nervous system. New York: Academic.

    Google Scholar 

  • Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 11, 127–138.

    Article  PubMed  CAS  Google Scholar 

  • Friston, K., Kilner, J., & Harrison, L. (2006). A free energy principle for the brain. Journal of Physiology, Paris, 100, 70–87.

    Article  PubMed  Google Scholar 

  • Gertsner, W., Kreiter, A. K., Markram, H., & Hertz, A. V. M. (1997). Neural codes: firing rates and beyond. PNAS, 94, 12740–12741.

    Article  Google Scholar 

  • Granger, C. W. J. (2008). Non-linear models: where do we go next-time varying parameters models? Studies in Nonlinear Dynamics & Econometrics, 12, 1–9.

    Article  Google Scholar 

  • Grimbert, F., & Faugeras, O. (2006). Bifurcation analysis of Jansen’s neural mass model. Neural Computation, 18, 3052–3068.

    Article  PubMed  Google Scholar 

  • Guigon, E., Baraduc, P., & Desmurget, M. (2008). Optimality, stochasticity, and variability in motor behaviour. Journal of Computational Neuroscience, 24, 57–68.

    Article  PubMed  Google Scholar 

  • Hasenstaub, A., Otte, S., Callaway, E., & Sejnowski, T. J. (2010). Metabolic cost as a unifying principle governing neuronal biophysics. PNAS, 107, 12329–12334.

    Article  PubMed  CAS  Google Scholar 

  • Heemels, W. P. M. H., Van Eijndhoven, S. J. L., & Stoorvogel, A. A. (1998). Linear quadratic regulator with positive controls. International Journal of Control, 70, 551–578.

    Article  Google Scholar 

  • Highman, N. J. (2008). Function of matrices: theory and computation. Philadelphia: Siam. Sociaty for Industrial and Applied Mathematics.

  • Hu, Y., & Zhou, X. Y. (2005). Constrained stochastic LQ control with random coefficients, and application to portfolio selection. SIAM Journal on Control and Optimization, 44, 444–466.

    Google Scholar 

  • Jansen, B. H., & Rit, V. G. (1995). Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biological Cybernetics, 73, 357–366.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, C. D. (1987). Limits of propriety for linear-quadratic regulator problems. International Journal of Control, 35, 1835–1846.

    Article  Google Scholar 

  • Kalman, R. E. (1960). Contributions to the theory of optimal control. Bol Soc Math Mexicana, 5, 102–119.

    Google Scholar 

  • Karbowski, J. (2003). How does connectivity between cortical areas depend on brain size? Implications for efficient computations. Journal of Computational Neuroscience, 15, 347–356.

    Article  PubMed  Google Scholar 

  • Katz, B., & Miledi, R. (1970). Membrane noise produced by acetylcholine. Nature, 226, 962–963.

    Article  PubMed  CAS  Google Scholar 

  • Körding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 427, 244–247.

    Article  PubMed  Google Scholar 

  • Körding, K. P., & Wolpert, D. M. (2006). Bayesian decision theory in sensorimotor control. Trends in Cognitive Sciences, 10, 319–326.

    Article  PubMed  Google Scholar 

  • Laughlin, S. B. (2001). Energy as a constrain on the coding and processing of sensory information. Current Opinion in Neurobiology, 11, 475–480.

    Article  PubMed  CAS  Google Scholar 

  • Laughlin, S. B., & Sejnowski, T. J. (2003). Communication in neuronal networks. Science, 301, 1870–1874.

    Article  PubMed  CAS  Google Scholar 

  • Lennie, P. (2003). The cost of cortical computation. Current Biology, 13, 493–497.

    Article  PubMed  CAS  Google Scholar 

  • Levy, W. B., & Baxter, R. A. (1996). Energy efficient neural codes. Neural Computation, 8, 531–543.

    Article  PubMed  CAS  Google Scholar 

  • Lopes da Silva, F. H., Hoeks, A., Smits, H., & Zetterberg, L. H. (1974). Model of brain rhythmic activity. The alpha-rhythm of the thalamus. Kybernetik, 15, 27–37.

    Article  PubMed  CAS  Google Scholar 

  • Maloney, L. T., & Mamassian, P. (2009). Bayesian decision theory as a model of human visual perception: testing Bayesian transfer. Visual Neuroscience, 26, 147–155.

    Article  PubMed  Google Scholar 

  • Maloney, L. T., & Zhang, H. (2010). Decision-theoretic models of visual perception and action. Vision Research, 50, 2362–2374.

    Article  PubMed  Google Scholar 

  • Martin, R. D. (1996). Scaling of the mammalian brain: the maternal energy hypothesis. News in Physiological Sciences, 11, 149–156.

    Google Scholar 

  • Model, P. G., Highstein, S. M., & Bennett, M. V. L. (1975). Depletion of vesicles and fatigue of transmission at a vertebrate central synapse. Brain Research, 98, 209–228.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery, J. M., & Madison, D. V. (2004). Discrete synaptic states define a major mechanism of synaptic plasticity. TRENDS in Neuroscience, 27, 744–750.

    Article  CAS  Google Scholar 

  • Moran, R. J., Stephan, K. E., Kiebel, S. J., Rombach, N., O’Connor, W. T., Murphy, K. J., et al. (2008). Bayesian estimation of synaptic physiology from the spectral responses of neural masses. NeuroImage, 42, 272–284.

    Article  PubMed  CAS  Google Scholar 

  • Niven, J. E. (2007). Brains, islands and evolution: breaking all the rules. Trends in Ecology & Evolution, 22, 57–59.

    Article  Google Scholar 

  • Niven, J. E., & Laughlin, S. B. (2008). Energy limitation as a selective pressure on the evolution of sensory systems. The Journal of Experimental Biology, 211, 1792–1804.

    Article  PubMed  CAS  Google Scholar 

  • Niven, J. E., Vähäsöyrinki, M., & Juusola, M. (2003). Shaker K+ -channels are predicted to reduce the metabolic cost of neural information in Drosophila photoreceptors. Proceedings of the Royal Society of London - Series B: Biological Sciences, 270, S58–S61.

    Article  PubMed  CAS  Google Scholar 

  • Oksendal, B. (2003). Stochastic Differential Equations. Springer-verlag.

  • Pons, A. J., Cantero, J. L., Atienza, M., & Garcia-Ojalvo, J. (2010). Relating structural and functional anomalous connectivity in the aging brain via neural mass modeling. NeuroImage, 52, 848–861.

    Article  PubMed  CAS  Google Scholar 

  • Raichle, M. E. (2010). Two views of brain function. Trends in Cognitive Sciences, 14, 180–190.

    Article  PubMed  Google Scholar 

  • Sotero, R. C., Bortel, A., Martínez-Cancino, R., Neupane, S., O’Connor, P., & Shmuel, A. (2010). Anatomically-constrained effective connectivity within and among layers in a cortical column modeled and estimated from local field potentials. Journal of Integrative Neuroscience, 9, 355–379.

    Article  PubMed  Google Scholar 

  • Sotero, R. C., & Martínez-Cancino, R. (2010). Dynamical mean field model of a neural-glial mass. Neural Computation, 22, 969–997.

    Article  PubMed  Google Scholar 

  • Sotero, R. C., & Trujillo-Barreto, N. J. (2007). Modelling the role of excitatory and inhibitory neuronal activity in the generation of the BOLD signal. NeuroImage, 35, 149–165.

    Article  PubMed  Google Scholar 

  • Sotero, R. C., & Trujillo-Barreto, N. J. (2008). Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism. NeuroImage, 39, 290–309.

    Article  PubMed  Google Scholar 

  • Sotero, R. C., Trujillo-Barreto, N. J., Iturria-Medina, Y., Carbonell, F., & Jiménez, J. C. (2007). Realistically coupled neural mass models can generate EEG rhythms. Neural Computation, 19, 478–512.

    Article  PubMed  Google Scholar 

  • Spiegler, A., Kiebel, S. J., Atay, F. M., & Knösche, T. R. (2010). Bifurcation analysis of neural mass models: impact of extrinsic inputs and dendritic time constants. NeuroImage, 52, 1041–1058.

    Article  PubMed  Google Scholar 

  • Todorov, E. (2005). Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system. Neural Computation, 17, 1084–1108.

    Article  PubMed  Google Scholar 

  • Todorov, E., Li, W., & Pan, W. (2005). From task parameters to motor synergies: a hierarchical framework for approximately optimal feedback control of redundant manipulators. Journal of Robotic Systems, 22, 669–710.

    Article  Google Scholar 

  • Tomás-Rodríguez, M., & Banks, S. P. (2010). Linear, Time-varying Approximations to Nonlinear Dynamical Systems with Applications in Control and Optimization. Lecture Notes in Control and Information Sciences. New York: Springer.

    Google Scholar 

  • Torrealdea, F. J., Sarasola, C., & d’Anjou, A. (2009a). Energy consumption and information transmission in model neurons. Chaos, Solitons and Fractals, 40, 60–68.

    Article  Google Scholar 

  • Torrealdea, F. J., Sarasola, C., d’Anjou, A., Moujahid, A., & Velez de Mendizabal, N. (2009b). Energy efficiency of information transmission by electrically coupled neurons. Bio Systems, 97, 60–71.

    Article  PubMed  Google Scholar 

  • Turelli, M. (1977). Random environments and stochastic calculus. Theoretical Population Biology, 12, 140–178.

    Article  PubMed  CAS  Google Scholar 

  • Valdés-Sosa, P. A., Sanchez-Bornot, J. M., Sotero, R. C., Iturria-Medina, Y., Bosch-Bayard, J., Carbonell, F., et al. (2009). Model driven EEG/fMRI fusion of brain oscillations. Human Brain Mapping, 30, 2701–2721.

    Article  PubMed  Google Scholar 

  • Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12, 1–24.

    Article  PubMed  CAS  Google Scholar 

  • Wonham, W. M. (1968). On a matrix Riccati equation of stochastic control. SIAM Journal on Control and Optimization, 6, 312–326.

    Article  Google Scholar 

  • Zetterberg, L. H., Kristiansson, L., & Mossberg, K. (1978). Performance of a model for a local neuron population. Biological Cybernetics, 31, 15–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Debra Dawson and Laura Betcherman for their comments on an earlier version of the manuscript and for English editing. Supported by Industry Canada / MNI Center of excellence in commercialization and research postdoctoral fellowship and grant awarded to RCS and AS respectively, and by CIHR grant MOP-102599 and Human Frontier Science grant RGY0080/2008 awarded to AS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roberto C. Sotero or Amir Shmuel.

Additional information

Action Editor: Gaute T Einevoll

Appendix A. Solution of the Hamilton-Jacobi-bellman equation for the LQR problem

Appendix A. Solution of the Hamilton-Jacobi-bellman equation for the LQR problem

Given the system:

$$ d{\mathbf{y}}(t) = {\mathbf{b}}\left( {{\mathbf{y}},{\mathbf{u}}} \right)dt + {\mathbf{\sigma }}\left( {\mathbf{y}} \right)d{\mathbf{W}}(t) $$
(53)

The Hamilton-Jacobi-Bellman (HJB) equation for \( {\mathbf{\psi }}\left( {s,{\mathbf{y}}} \right) = \mathop{{\inf }}\limits_{{\mathbf{u}}} {{\mathbf{J}}^{{\mathbf{u}}}}\left( {s,{\mathbf{y}}} \right) \)is (Oksendal 2003):

$$ 0 = \mathop{{\inf }}\limits_{{\mathbf{u}}} \left\{ {{{\mathbf{F}}^{{\mathbf{u}}}}\left( {s,{\mathbf{y}}} \right) + \left( {{{\mathbf{L}}^{{\mathbf{u}}}}{\mathbf{\psi }}} \right)\left( {s,{\mathbf{y}}} \right)} \right\} $$
(54)

where:

$$ \left( {{L^v}f} \right)(y) = \frac{{\partial f}}{{\partial s}}(y) + \sum\limits_{{i = 1}}^n {{b_i}} \left( {y,v} \right)\frac{{\partial f}}{{\partial {y_i}}} + \frac{1}{2}\sum\limits_{{i,j = 1}}^n {{{\left( {{\mathbf{\sigma \sigma }}'} \right)}_{{ij}}}} \left( {y,v} \right)\frac{{{\partial^2}f}}{{\partial {y_i}\partial {y_j}}} $$
(55)

and \( {{\mathbf{F}}^{{\mathbf{u}}}}\left( {t,{\mathbf{y}}} \right) = {\mathbf{u}}'(t){\mathbf{Ru}}(t) + {\mathbf{y}}'(t){\mathbf{Qy}}(t) \). Using (9) we get:

$$ {{\mathbf{F}}^{{\mathbf{u}}}}\left( {t,{\mathbf{y}}} \right) + {{\mathbf{L}}^{{\mathbf{u}}}}{\mathbf{\psi }} = {\mathbf{y}}'{\mathbf{\dot{M}y}} + {\mathbf{\dot{\gamma }}} + {\mathbf{y}}'{\mathbf{Qy}} + {\mathbf{u}}'{\mathbf{Ru}} + \left( {{\mathbf{u}} + {\mathbf{\mu }}} \right)'\left( {{\mathbf{My + M}}'{\mathbf{y}}} \right) + \sum\limits_{{i,j = 1}}^n {{{\left( {{\mathbf{\sigma \sigma }}'} \right)}_{{i,j}}}{{\mathbf{M}}_{{ij}}}} $$
(56)

where we used: \( {\mathbf{b}}\left( {{\mathbf{y}},{\mathbf{u}}} \right) = {\mathbf{u}}(t) + {\mathbf{\mu }} \). The minimum is obtained when \( \frac{\partial }{{\partial {u_i}}}\left( {{F^u}\left( {t,y} \right) + {L^u}\psi } \right) = 0 \), i.e. when: \( 2{\mathbf{Ru}} + 2{\mathbf{My}} = 0 \), or:

$$ {{\mathbf{u}}^{*}} = - {{\mathbf{R}}^{{ - 1}}}{\mathbf{My}} $$
(57)

We substitute this value in (56) and obtain the right side equal to 0 if we choose \( {\mathbf{M}}(t) \) such that:

$$ {\mathbf{\dot{M}}}(t) = {\mathbf{M}}(t){{\mathbf{R}}^{{ - 1}}}{\mathbf{M}}(t) - {\mathbf{Q}} $$
(58)

and \( {\mathbf{\gamma }}(t) \) such that:

$$ {\mathbf{\dot{\gamma }}}(t) = - 2{\mathbf{\mu M}}(t){\mathbf{y}}(t) - tr\left( {{\mathbf{\sigma }}\left( {\mathbf{y}} \right){\mathbf{\sigma }}{{\left( {\mathbf{y}} \right)}^T}{\mathbf{M}}(t)} \right) $$
(59)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sotero, R.C., Shmuel, A. Energy-based stochastic control of neural mass models suggests time-varying effective connectivity in the resting state. J Comput Neurosci 32, 563–576 (2012). https://doi.org/10.1007/s10827-011-0370-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-011-0370-8

Keywords

Navigation