Skip to main content
Log in

Computational investigation of functional water molecules in GPCRs bound to G protein or arrestin

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

G protein-coupled receptors (GPCRs) are membrane proteins constituting the largest family of drug targets. The activated GPCR binds either the heterotrimeric G proteins or arrestin through its activation cycle. Water molecules have been reported to play a role in GPCR activation. Nevertheless, reported studies are focused on the hydrophobic helical bundle region. How water molecules function in GPCR bound either G protein or arrestin is rarely studied. To address this issue, we carried out computational studies on water molecules in both GPCR/G protein complexes and GPCR/arrestin complexes. Using inhomogeneous fluid theory (IFT), we locate all possible hydration sites in GPCRs binding either to G protein or arrestin. We observe that the number of water molecules on the interaction surface between GPCRs and signal proteins are correlated with the insertion depths of the α5-helix from G-protein or “finger loop” from arrestin in GPCRs. In three out of the four simulation pairs, the interfaces of Rhodopsin, M2R and NTSR1 in the G protein-associated systems show more water-mediated hydrogen-bond networks when compared to these in arrestin-associated systems. This reflects that more functionally relevant water molecules may probably be attracted in G protein-associated structures than that in arrestin-associated structures. Moreover, we find the water-mediated interaction networks throughout the NPxxY region and the orthosteric pocket, which may be a key for GPCR activation. Reported studies show that non-biased agonist, which can trigger both GPCR-G protein and GPCR-arrestin activation signal, can result in pharmacologically toxicities. Our comprehensive studies of the hydration sites in GPCR/G protein complexes and GPCR/arrestin complexes may provide important insights in the design of G-protein biased agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data are freely available upon request of the corresponding author.

Abbreviations

GPCR:

G-protein coupled receptor

IFT:

Inhomogeneous fluid theory

β1AR:

β1-Adrenergic receptor

NTSR1:

Neurotensin receptor-1

Wb:

Water in β1-adrenergic receptor

Wr:

Water in Rhodopsin

MD:

Molecular dynamics

POPC:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

M2R:

Muscarinic acetylcholine-2-receptor

Wn:

Water in neurotensin receptor-1

Wm:

Water in muscarinic acetylcholine-2-receptor

TIP3P:

Transferable interatomic potential with three points

References

  1. Civciristov S, Ellisdon AM, Suderman R, Pon CK, Evans BA, Kleifeld O, Charlton SJ, Hlavacek WS, Canals M, Halls ML (2018) Preassembled GPCR signaling complexes mediate distinct cellular responses to ultralow ligand concentrations. Sci Signal 11:eaan1188

    Article  Google Scholar 

  2. Latorraca NR, Venkatakrishnan AJ, Dror RO (2017) GPCR dynamics: structures in motion. Chem Rev 117:139–155

    Article  CAS  Google Scholar 

  3. Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB, Gloriam DE (2017) Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 16:829–842

    Article  CAS  Google Scholar 

  4. Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, Karlsson A, Al-Lazikani B, Hersey A, Oprea TI (2017) A comprehensive map of molecular drug targets. Nat Rev Drug Discov 16:19–34

    Article  CAS  Google Scholar 

  5. Gurevich VV, Gurevich EV (2006) The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol Ther 110:465–502

    Article  CAS  Google Scholar 

  6. Bologna Z, Teoh JP, Bayoumi AS, Tang Y, Kim IM (2017) Biased G protein-coupled receptor signaling: new player in modulating physiology and pathology. Biomol Ther 25:12–25

    Article  Google Scholar 

  7. Smrcka AV (2008) G protein beta gamma subunits: central mediators of G protein-coupled receptor signaling. Cell Mol Life Sci 65:2191–2214

    Article  CAS  Google Scholar 

  8. Toth AD, Prokop S, Gyombolai P, Varnai P, Balla A, Gurevich VV, Hunyady L, Turu G (2018) Heterologous phosphorylation-induced formation of a stability lock permits regulation of inactive receptors by beta-arrestins. J Biol Chem 293:876–892

    Article  CAS  Google Scholar 

  9. Tian X, Kang DS, Benovic JL (2014) Beta-arrestins and G protein-coupled receptor trafficking. Handb Exp Pharmacol 219:173–186

    Article  CAS  Google Scholar 

  10. Senarath K, Kankanamge D, Samaradivakara S, Ratnayake K, Tennakoon M, Karunarathne A (2018) Regulation of G protein beta gamma signaling. Nat Rev Mol Cell Biol 339:133–191

    Article  CAS  Google Scholar 

  11. Rajagopal S, Rajagopal K, Lefkowitz RJ (2010) Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 9:373–386

    Article  CAS  Google Scholar 

  12. Crilly SE, Puthenveedu MA (2021) Compartmentalized GPCR signaling from intracellular membranes. J Membr Biol 254:259–271

    Article  CAS  Google Scholar 

  13. Ball P (2008) Water as an active constituent in cell biology. Chem Rev 108:74–108

    Article  CAS  Google Scholar 

  14. Freier E, Wolf S, Gerwert K (2011) Proton transfer via a transient linear water-molecule chain in a membrane protein. Proc Natl Acad Sci USA 108:11435–11439

    Article  CAS  Google Scholar 

  15. Chawla U, Perera SMDC, Fried SDE, Eitel AR, Mertz B, Weerasinghe N, Pitman MC, Struts AV, Brown MF (2021) Activation of the G-protein-coupled receptor rhodopsin by water. Angew Chem Int Ed 60:2288–2295

    Article  CAS  Google Scholar 

  16. Chang CC, Liou JW, Dass KTP, Li YT, Jiang SJ, Pan SF, Yeh YC, Hsu HJ (2020) Internal water channel formation in CXCR4 is crucial for G(i)-protein coupling upon activation by CXCL12. Commun Chem 3:1–12

    Article  Google Scholar 

  17. Yuan SG, Filipek S, Palczewski K, Vogel H (2014) Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway. Nat Commun 5:1–10

    Article  CAS  Google Scholar 

  18. Bertalan E, Lesnik S, Bren U, Bondar AN (2020) Protein-water hydrogen-bond networks of G protein-coupled receptors: graph-based analyses of static structures and molecular dynamics. J Struct Biol 212:107634

    Article  CAS  Google Scholar 

  19. Osman R, Mezei M, Barak D, Cordomi A, Pardo L (2013) The role of internal water in GPCR complexes. Biophys J 104:41A

    Article  Google Scholar 

  20. Venkatakrishnan AJ, Ma AK, Fonseca R, Kelly B, Betz RM, Asawa C, Kobilka BK, Dror RO (2019) Diverse GPCRs exhibit conserved water networks for stabilization and activation. Proc Natl Acad Sci USA 116:3288–3293

    Article  CAS  Google Scholar 

  21. Abel R, Young T, Farid R, Berne BJ, Friesner RA (2008) Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. J Am Chem Soc 130:2817–2831

    Article  CAS  Google Scholar 

  22. Li Z, Lazaridis T (2006) Thermodynamics of buried water clusters at a protein-ligand binding interface. J Phys Chem B 110:1464–1475

    Article  CAS  Google Scholar 

  23. Sun XQ, Agren H, Tu YQ (2014) Functional water molecules in rhodopsin activation. J Phys Chem B 118:10863–10873

    Article  CAS  Google Scholar 

  24. Kang YY, Kuybeda O, de Waal PW, Mukherjee S, Van Eps N, Dutka P, Zhou XE, Bartesaghi A, Erramilli S, Morizumi T, Gu X, Yin YT, Liu P, Jiang Y, Meng X, Zhao GP, Melcher K, Ernst OP, Kossiakoff AA, Subramaniam S, Xu HE (2018) Cryo-EM structure of human rhodopsin bound to an inhibitory G protein. Nature 558:553–558

    Article  CAS  Google Scholar 

  25. Tsai CJ, Pamula F, Nehme R, Muhle J, Weinert T, Flock T, Nogly P, Edwards PC, Carpenter B, Gruhl T, Ma P, Deupi X, Standfuss J, Tate CG, Schertler GFX (2018) Crystal structure of rhodopsin in complex with a mini-G(o) sheds light on the principles of G protein selectivity. Sci Adv 4:eaat7052

    Article  CAS  Google Scholar 

  26. Gao Y, Hu H, Ramachandran S, Erickson JW, Cerione RA, Skiniotis G (2019) Structures of the rhodopsin-transducin complex: insights into G-protein activation. Mol Cell 75:781–790

    Article  CAS  Google Scholar 

  27. Kato HE, Zhang Y, Hu HL, Suomivuori CM, Kadji FMN, Aoki J, Kumar KK, Fonseca R, Hilger D, Huang WJ, Latorraca NR, Inoue A, Dror RO, Kobilka BK, Skiniotis G (2019) Conformational transitions of a neurotensin receptor 1-G(i1) complex. Nature 572:80–85

    Article  CAS  Google Scholar 

  28. Zhang M, Gui M, Wang ZF, Gorgulla C, Yu JJ, Wu H, Sun ZYJ, Klenk C, Merklinger L, Morstein L, Hagn F, Pluckthun A, Brown A, Nasr ML, Wagner G (2021) Cryo-EM structure of an activated GPCR-G protein complex in lipid nanodiscs. Nat Struct Mol Biol 28:258–267

    Article  CAS  Google Scholar 

  29. Su MF, Zhu L, Zhang YX, Paknejad N, Dey R, Huang JY, Lee MY, Williams D, Jordan KD, Eng ET, Ernst OP, Meyerson JR, Hite RK, Walz T, Liu W, Huang XY (2020) Structural basis of the activation of heterotrimeric Gs-protein by isoproterenol-bound beta(1)-adrenergic receptor. Mol Cell 80:59–71

    Article  CAS  Google Scholar 

  30. Maeda S, Qu QH, Robertson MJ, Skiniotis G, Kobilka BK (2019) Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Science 364:552–557

    Article  CAS  Google Scholar 

  31. Kang YY, Zhou XE, Gao X, He YZ, Liu W, Ishchenko A, Barty A, Sathish D, Yefanov O, Han GW, Xu QP, de Waal PW, Ke JY, Tan MHE, Zhang CH, Moeller A, West GM, Pascal BD, Van Eps N, Caro LN, Vishnivetskiy SA, Lee RJ, Suino-Powell KM, Gu X, Pal K, Ma JM, Zhi XY, Boutet S, Williams GJ, Messerschmidt M, Gati C, Zatsepin NA, Wang DJ, James D, Basu S, Roy-Chowdhury S, Conrad CE, Coe J, Liu HG, Lisova S, Kupitz C, Grotjohann I, Fromme R, Jiang Y, Tan MJ, Yang HY, Li J, Wang MT, Zheng Z, Li DF, Howe N, Zhao YM, Standfuss J, Diederichs K, Dong YH, Potter CS, Carragher B, Caffrey M, Jiang HL, Chapman HN, Spence JCH, Fromme P, Weierstall U, Ernst OP, Katritch V, Gurevich VV, Griffin PR, Hubbell WL, Stevens RC, Cherezov V, Melcher K, Xu HE (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523:561–567

    Article  CAS  Google Scholar 

  32. Zhou XE, Gao X, Barty A, Kang YY, He YZ, Liu W, Ishchenko A, White TA, Yefanov O, Han GW, Xu QP, de Waal PW, Suino-Powell KM, Boutet S, Williams GJ, Wang MT, Li DF, Caffrey M, Chapman HN, Spence JCH, Fromme P, Weierstall U, Stevens RC, Cherezov V, Melcher K, Xu HE (2016) X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex. Sci Data 3:1–13

    Article  Google Scholar 

  33. Zhou XE, He YZ, de Waal PW, Gao X, Kang YY, Van Eps N, Yin YT, Pal K, Goswami D, White TA, Barty A, Latorraca NR, Chapman HN, Hubbell WL, Dror RO, Stevens RC, Cherezov V, Gurevich VV, Griffin PR, Ernst OP, Melcher K, Xu HE (2017) Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell 170:457–469

    Article  CAS  Google Scholar 

  34. Yin WC, Li ZH, Jin ML, Yin YL, de Waal PW, Pal K, Yin YT, Gao X, He YZ, Gao J, Wang XX, Zhang Y, Zhou H, Melcher K, Jiang Y, Cong Y, Zhou XE, Yu XK, Xu HE (2019) A complex structure of arrestin-2 bound to a G protein-coupled receptor. Cell Res 29:971–983

    Article  CAS  Google Scholar 

  35. Huang WJ, Masureel M, Qu QH, Janetzko J, Inoue A, Kato HE, Robertson MJ, Nguyen KC, Glenn JS, Skiniotis G, Kobilka BK (2020) Structure of the neurotensin receptor 1 in complex with beta-arrestin 1. Nature 579:303–308

    Article  CAS  Google Scholar 

  36. Lee Y, Warne T, Nehme R, Pandey S, Dwivedi-Agnihotri H, Chaturvedi M, Edwards PC, Garcia-Nafria J, Leslie AGW, Shukla AK, Tate CG (2020) Molecular basis of beta-arrestin coupling to formoterol-bound beta(1)-adrenoceptor. Nature 583:862–866

    Article  CAS  Google Scholar 

  37. Staus DP, Hu HL, Robertson MJ, Kleinhenz ALW, Wingler LM, Capel WD, Latorraca NR, Lefkowitz RJ, Skiniotis G (2020) Structure of the M2 muscarinic receptor-beta-arrestin complex in a lipid nanodisc. Nature 579:297–302

    Article  CAS  Google Scholar 

  38. Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V (2004) The retinal conformation and its environment in rhodopsin in light of a new 2.2 angstrom crystal structure. J Mol Biol 342:571–583

    Article  CAS  Google Scholar 

  39. Deluigi M, Klipp A, Klenk C, Merklinger L, Eberle SA, Morstein L, Heine P, Mittl PRE, Ernst P, Kamenecka TM, He YJ, Vacca S, Egloff P, Honegger A, Pluckthun A (2021) Complexes of the neurotensin receptor 1 with small-molecule ligands reveal structural determinants of full, partial, and inverse agonism. Sci Adv 7:eabe5504

    Article  CAS  Google Scholar 

  40. Xu XY, Kaindl J, Clark MJ, Hubner H, Hirata K, Sunahara RK, Gmeiner P, Kobilka BK, Liu XY (2021) Binding pathway determines norepinephrine selectivity for the human beta(1)AR over beta(2)AR. Cell Res 31:569–579

    Article  CAS  Google Scholar 

  41. Haga K, Kruse AC, Asada H, Yurugi-Kobayashi T, Shiroishi M, Zhang C, Weis WI, Okada T, Kobilka BK, Haga T, Kobayashi T (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482:547–551

    Article  CAS  Google Scholar 

  42. Berman HM, Kleywegt GJ, Nakamura H, Markley JL (2014) The protein data bank archive as an open data resource. J Comput Aided Mol Des 28:1009–1014

    Article  CAS  Google Scholar 

  43. Yun Y, Ji J, Lee HH (2021) Dissecting the structural features of beta-arrestins as multifunctional proteins. BBA-Proteins Proteom 1869:140603

    Article  CAS  Google Scholar 

  44. Congreve M, De Graaf C, Swain NA, Swain NA, Tate CG (2020) Impact of GPCR structures on drug discovery. Cell 181:81–91

    Article  CAS  Google Scholar 

  45. Bunemann M, Hosey MM (1999) G-protein coupled receptor kinases as modulators of G-protein signalling. J Physiol 517:5–23

    Article  CAS  Google Scholar 

  46. (2021) Schrödinger release 2021–2: Maestro, Schrödinger, LLC, New York, NY

  47. Venkatakrishnan AJ, Deupi X, Lebon G, Heydenreich FM, Flock T, Miljus T, Balaji S, Bouvier M, Veprintsev DB, Tate CG (2016) Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region. Nature 536:484–487

    Article  CAS  Google Scholar 

  48. (2021) Schrödinger Release 2021–2: desmond molecular dynamics system, Schrödinger, LLC, New York, NY

  49. Hu BJ, Lill MA (2012) Protein pharmacophore selection using hydration-site analysis. J Chem Inf Model 52:1046–1060

    Article  CAS  Google Scholar 

  50. Okada T, Fujiyoshi Y, Silow M, Navarro J, Landau EM, Shichida Y (2002) Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography. Proc Natl Acad Sci USA 99:5982–5987

    Article  CAS  Google Scholar 

  51. Lefkowitz RJ (2013) A brief history of G-protein coupled receptors (nobel lecture). Angew Chem Int Ed 52:6366–6378

    Article  CAS  Google Scholar 

  52. Zhou XE, Melcher K, Xu HE (2017) Understanding the GPCR biased signaling through G protein and arrestin complex structures. Curr Opin Struct Biol 45:150–159

    Article  CAS  Google Scholar 

  53. Zheng C, Tholen J, Gurevich VV (2019) Critical role of the finger loop in arrestin binding to the receptors. PLoS ONE 14:e0213792

    Article  CAS  Google Scholar 

  54. Chaturvedi M, Maharana J, Shukla AK (2020) Terminating G-protein coupling: structural snapshots of GPCR-beta-arrestin complexes. Cell 180:1041–1043

    Article  CAS  Google Scholar 

  55. Vishnivetskiy SA, Huh EK, Gurevich EV, Gurevich VV (2021) The finger loop as an activation sensor in arrestin. J Neurochem 157:1138–1152

    Article  CAS  Google Scholar 

  56. Rodier F, Bahadur RP, Chakrabarti P, Janin J (2005) Hydration of protein-protein interfaces. Proteins 60:36–45

    Article  CAS  Google Scholar 

  57. Papoian GA, Ulander J, Wolynes PG (2003) Role of water mediated interactions in protein-protein recognition landscapes. J Am Chem Soc 125:9170–9178

    Article  CAS  Google Scholar 

  58. Fritze O, Filipek S, Kuksa V, Palczewski K, Hofmann KP, Ernst OP (2003) Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation. Proc Natl Acad Sci USA 100:2290–2295

    Article  CAS  Google Scholar 

  59. He R, Browning DD, Ye RD (2001) Differential roles of the NPXXY motif in formyl peptide receptor signaling. J Immunol 166:4099–4105

    Article  CAS  Google Scholar 

  60. White KL, Eddy MT, Gao ZG, Han GW, Lian T, Deary A, Patel N, Jacobson KA, Katritch V, Stevens RC (2018) Structural connection between activation microswitch and allosteric sodium site in GPCR signaling. Structure 26:259–269

    Article  CAS  Google Scholar 

  61. Grahl A, Abiko LA, Isogai S, Sharpe T, Grzesiek S (2020) A high-resolution description of beta(1)-adrenergic receptor functional dynamics and allosteric coupling from backbone NMR. Nat Commun 11:1–13

    Article  Google Scholar 

  62. Jong YJI, Harmon SK, O’malley KL (2018) GPCR signalling from within the cell. Br J Pharmacol 175:4026–4035

    Article  CAS  Google Scholar 

  63. Wingler LM, Skiba MA, McMahon C, Staus DP, Kleinhenz ALW, Suomivuori CM, Latorraca NR, Dror RO, Lefkowitz RJ, Kruse AC (2020) Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR. Science 367:888–892

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Yuan Zhao, Abbisko Therapeutics Co., Ltd.,for providing the protein preparation module of schrödinger.

Funding

All the simulations were performed on our own high-performance computing cluster in Jiangxi Science & Technology Normal University. This work was supported by the National Natural Science Foundation of China (Grant 22063004), the Youth project of Jiangxi Provincial Department of Education (Grant GJJ170696), the University Doctoral Fund (Grant 2017BSQD016), the Open Fund of Provincial Research Platform (Grant KFGJ19014), the College Students' innovation project (Grant S202011318063), and the horizontal research funding (Grant H20210713181758000003).

Author information

Authors and Affiliations

Authors

Contributions

JH carried out the molecular dynamics simulations. JH and XS designed the study and analyzed the data. ZK and JC were responsible for the project. JH, XS, ZK and JC contributed to writing and commenting on the manuscript.

Corresponding authors

Correspondence to Zhengzhong Kang or Jianxin Cheng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 3496 KB)

Supplementary file2 (DOCX 5274 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Sun, X., Kang, Z. et al. Computational investigation of functional water molecules in GPCRs bound to G protein or arrestin. J Comput Aided Mol Des 37, 91–105 (2023). https://doi.org/10.1007/s10822-022-00492-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-022-00492-z

Keywords

Navigation