Skip to main content

Advertisement

Log in

Molecular and thermodynamic insights into interfacial interactions between collagen and cellulose investigated by molecular dynamics simulation and umbrella sampling

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Cellulose/collagen composites have been widely used in biomedicine and tissue engineering. Interfacial interactions are crucial in determining the final properties of cellulose/collagen composite. Molecular dynamics simulations were carried out to gain insights into the interactions between cellulose and collagen. It has been found that the structure of collagen remained intact during adsorption. The results derived from umbrella sampling showed that (110) and (\(1\bar{1}0\)) faces exhibited the strongest affinity with collagen (100) face came the second and (010) the last, which could be attributed to the surface roughness and hydrogen-bonding linkers involved water molecules. Cellulose planes with flat surfaces and the capability to form hydrogen-bonding linkers produce stronger affinity with collagen. The occupancy of hydrogen bonds formed between cellulose and collagen was low and not significantly contributive to the binding affinity. These findings provided insights into the interactions between cellulose and collagen at the molecular level, which may guide the design and fabrication of cellulose/collagen composites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data and software are available. All data generated or analyzed during this study are included in this published article (and its supplementary information files). Cellulose was built using Cellulose-Builder (https://cces.unicamp.br/2018/12/09/cellulose-builder/), which is open source. VMD was used for initial structure construction and trajectory visualization, which is free of charge (https://www.ks.uiuc.edu/Research/vmd/). GROMACS-5.1 was used to perform molecular dynamics simulations and umbrella sampling, which can be obtained free of charge (https://www.gromacs.org.documentation).

References

  1. French AD (2017) Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose 24:4605–4609. https://doi.org/10.1007/s10570-017-1450-3

    Article  CAS  Google Scholar 

  2. Ansari F, Sjöstedt A, Larsson PT, Berglund LA, Wågberg L (2015) Hierarchical wood cellulose fiber/epoxy biocomposites – materials design of fiber porosity and nanostructure. Compos Part A: Appl Sci Manufac 74:60–68. https://doi.org/10.1016/j.compositesa.2015.03.024

    Article  CAS  Google Scholar 

  3. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. https://doi.org/10.1039/c0cs00108b

    Article  CAS  Google Scholar 

  4. Toosi S, Naderi-Meshkin H, Kalalinia F, HosseinKhani H, Heirani-Tabasi A, Havakhah S, Nekooei S, Jafarian AH, Rezaie F, Peivandi MT, Mesgarani H, Behravan J (2019) Bone defect healing is induced by collagen sponge/polyglycolic acid. J Mater Sci: Mater Med 30:33. https://doi.org/10.1007/s10856-019-6235-9

    Article  CAS  Google Scholar 

  5. Zhang W, Wang XC, Li XY, Zhang LL, Jiang F (2020) A 3D porous microsphere with multistage structure and component based on bacterial cellulose and collagen for bone tissue engineering. Carbohydr Polym 236:116043. https://doi.org/10.1016/j.carbpol.2020.116043

    Article  CAS  Google Scholar 

  6. Salimi S, Sotudeh-Gharebagh R, Zarghami R, Chan SY, Yuen KH (2019) Production of nanocellulose and its applications in drug delivery: a critical review. ACS Sustain Chem Eng 7:15800–15827. https://doi.org/10.1021/acssuschemeng.9b02744

    Article  CAS  Google Scholar 

  7. Chen W, Yu H, Lee SY, Wei T, Li J, Fan Z (2018) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47:2837–2872. https://doi.org/10.1039/C7CS00790F

    Article  CAS  Google Scholar 

  8. Zhao D, Zhu Y, Cheng W, Chen W, Wu Y, Yu H (2021) Cellulose-based flexible functional materials for emerging intelligent electronics. Adv Mater 33:e2000619. https://doi.org/10.1002/adma.202000619

    Article  CAS  Google Scholar 

  9. Golmohammadi H, Morales-Narváez E, Naghdi T, Merkoçi A (2017) Nanocellulose in sensing and biosensing. Chem Mater 29:5426–5446. https://doi.org/10.1021/acs.chemmater.7b01170

    Article  CAS  Google Scholar 

  10. Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI (2019) The collagen suprafamily: from biosynthesis to advanced biomaterial development. Adv Mater 31:e1801651. https://doi.org/10.1002/adma.201801651

    Article  CAS  Google Scholar 

  11. Henriksen K, Karsdal MA (2016) Type I collagen. Biochem Collagen. https://doi.org/10.1016/b978-0-12-809847-9.00001-5

    Article  Google Scholar 

  12. Lee A, Hudson AR, Shiwarski DJ, Tashman JW, Feinberg AW (2019) 3D bioprinting of collagen to rebuild components of the human heart. Science 365:482–487

    Article  CAS  Google Scholar 

  13. Ge L, Xu Y, Li X, Yuan L, Tan H, Li D, Mu C (2018) Fabrication of antibacterial collagen-based composite wound dressing. ACS Sustain Chem Eng 6:9153–9166. https://doi.org/10.1021/acssuschemeng.8b01482

    Article  CAS  Google Scholar 

  14. Pei Y, Yang J, Liu P, Xu M, Zhang X, Zhang L (2013) Fabrication, properties and bioapplications of cellulose/collagen hydrolysate composite films. Carbohydr Polym 92:1752–1760. https://doi.org/10.1016/j.carbpol.2012.11.029

    Article  CAS  Google Scholar 

  15. Noh YK, Dos Santos Da Costa A, Park YS, Du P, Kim IH, Park K (2019) Fabrication of bacterial cellulose-collagen composite scaffolds and their osteogenic effect on human mesenchymal stem cells. Carbohydr Polym 219:210–218. https://doi.org/10.1016/j.carbpol.2019.05.039

    Article  CAS  Google Scholar 

  16. Lee JS, Ryu YS, Kim IS, Kim SH (2019) Effect of interface affinity on the performance of a composite of microcrystalline cellulose and polypropylene/polylactide blends. Polym Int 68:1402–1410. https://doi.org/10.1002/pi.5831

    Article  CAS  Google Scholar 

  17. Nakatani H, Iwakura K, Hamadate M, Okazaki N, Aoyama M, Terano M (2011) Interface adhesion properties of syndiotactic polypropylene/cellulose group composite: relationship between chemical structure of coupling agent and reactivity for cellulose group. J Appl Polym Sci 122:2798–2806. https://doi.org/10.1002/app.34325

    Article  CAS  Google Scholar 

  18. Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88. https://doi.org/10.1016/j.copbio.2016.01.002

    Article  CAS  Google Scholar 

  19. Reinikainen T, Ruohonen L, Nevanen T, Laaksonen L, Kraulis P, Jones TA, Knowles JKC, Teeri TT (1992) Investigation of the function of mutated cellulose-binding domains of trichoderma reesei cellobiohydrolase I. Proteins 14:475–482

    Article  CAS  Google Scholar 

  20. Markus L, Maija-Liisa M, Maarit K, Gunnar L, Jerry S, Torbjorn D, Tapani R, Goran P, Arto A (1995) Identification of functionally important amino acids in the cellulose-binding domain of Trichoderma reesei cellobiohydrolase I. Protein Sci 4:1056–1064

    Article  Google Scholar 

  21. Lehtio J, Sugiyamat J, Gustavsson M, Fransson L, Linder M, Teeri uT (2016) The binding specificity and affinity determinants of family 1 and family 3 cellulose b inding modules. Proc Natl Acad Sci USA 100:484–489

    Article  Google Scholar 

  22. Griffo A, Rooijakkers BJM, Hahl H, Jacobs K, Linder MB, Laaksonen P (2019) Binding forces of cellulose binding modules on cellulosic nanomaterials. Biomacromolecules 20:769–777. https://doi.org/10.1021/acs.biomac.8b01346

    Article  CAS  Google Scholar 

  23. Chundawat SPS, Nemmaru B, Hackl M, Brady SK, Hilton MA, Johnson MM, Chang S, Lang MJ, Huh H, Lee SH, Yarbrough JM, Lopez CA, Gnanakaran S (2021) Molecular origins of reduced activity and binding commitment of processive cellulases and associated carbohydrate-binding proteins to cellulose III. J Biol Chem 296:100431. https://doi.org/10.1016/j.jbc.2021.100431

    Article  CAS  Google Scholar 

  24. Zhang M, Ding C, Yang J, Lin S, Chen L, Huang L (2016) Study of interaction between water-soluble collagen and carboxymethyl cellulose in neutral aqueous solution. Carbohydr Polym 137:410–417. https://doi.org/10.1016/j.carbpol.2015.10.098

    Article  CAS  Google Scholar 

  25. Liu D, Dong X, Han B, Huang H, Qi M (2020) Cellulose nanocrystal/collagen hydrogels reinforced by anisotropic structure: Shear viscoelasticity and related strengthening mechanism. Compos Commun 21:100374. https://doi.org/10.1016/j.coco.2020.100374

    Article  Google Scholar 

  26. Fernandes A, Thomas L, Altaner C, Callow P, Forsyth V, Apperley D, Kennedy C, Jarvis M (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci 108:e1195–e1203

    Article  Google Scholar 

  27. Vermaas JV, Crowley MF, Beckham GT (2019) A quantitative molecular atlas for interactions between lignin and cellulose. ACS Sustain Chem Eng 7:19570–19583. https://doi.org/10.1021/acssuschemeng.9b04648

    Article  CAS  Google Scholar 

  28. Malaspina DC, Faraudo J (2019) Molecular insight into the wetting behavior and amphiphilic character of cellulose nanocrystals. Adv Colloid Interface Sci 267:15–25. https://doi.org/10.1016/j.cis.2019.02.003

    Article  CAS  Google Scholar 

  29. Cevanti TA, Sari NSP, Isnaini SI, Rois MF, Setyawan H, Soetojo A, Widjiastuti I (2021) Cellulose fiber from coconut coir for development of dental composite filler. J Int Dent Med Res 14:1401–1406

    Google Scholar 

  30. Chen P, Berglund RGL, Wohlert LA J (2020) Surface modification effects on nanocellulose – molecular dynamics simulations using umbrella sampling and computational alchemy. J Mater Chem A 8(44):23617–23627. https://doi.org/10.1039/d0ta09105g

    Article  CAS  Google Scholar 

  31. Ren Z, Guo R, Bi H, Jia X, Xu M, Cai L (2019) Interfacial adhesion of polylactic acid on cellulose surface: a molecular dynamics study. ACS Appl Mater Interfaces 12(2):3236–3244. https://doi.org/10.1021/acsami.9b20101

    Article  CAS  Google Scholar 

  32. Gomes TCF, Skaf MS (2012) Cellulose-builder: a toolkit for building crystalline structures of cellulose. J Comput Chem 33:1338–1346. https://doi.org/10.1002/jcc.22959

    Article  CAS  Google Scholar 

  33. Berisio R, Vitagliano L, Mazzarella L, Zagari A (2009) Crystal structure of the collagen triple helix model [(Pro-Pro-Gly)10]3. Protein Sci 11:262–270. https://doi.org/10.1110/ps.32602

    Article  CAS  Google Scholar 

  34. Pradhan SM, Katti DR, Katti KS (2011) Steered molecular dynamics study of mechanical response of full length and short collagen molecules. J Nanomechanics Micromechanics 1(3):104–110. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000035

    Article  Google Scholar 

  35. Cutini M, Bocus M, Ugliengo P (2019) Decoding collagen triple helix stability by means of hybrid DFT simulations. J Phys Chem B 123(34):7354–7364. https://doi.org/10.1021/acs.jpcb.9b05222

    Article  CAS  Google Scholar 

  36. Ruiz-Rodriguez L, Loche P, Hansen LT, Netz RR, Fratzl P, Schneck E, Bertinetti L (2021) Sequence-specific response of collagen-mimetic peptides to osmotic pressure. MRS Bull 46(10):889–901. https://doi.org/10.1557/s43577-021-00138-9

    Article  CAS  Google Scholar 

  37. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph Model 14:33–38

    Article  CAS  Google Scholar 

  38. Mark P, Nilsson L (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A 105:9954–9960

    Article  CAS  Google Scholar 

  39. Boonstra S, Onck PR, van der Giessen E (2016) CHARMM TIP3P water model suppresses peptide folding by solvating the unfolded state. J Phys Chem B 120:3692–3698. https://doi.org/10.1021/acs.jpcb.6b01316

    Article  CAS  Google Scholar 

  40. Lee S, Tran A, Allsopp M, Lim JB, Hénin J, Klauda JB (2014) CHARMM36 united atom chain model for lipids and surfactants. J Phys Chem B 118:547–556. https://doi.org/10.1021/jp410344g

    Article  CAS  Google Scholar 

  41. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  Google Scholar 

  42. Berendsen HJC, Spoel Dvd D Rv (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  43. Petersen HG (1995) Accuracy and efficiency of the particle mesh Ewald method. J Chem Phys 103:3668–3679. https://doi.org/10.1063/1.470043

    Article  CAS  Google Scholar 

  44. Hess B, Bekker H, Berendsen H, Fraaije J (1998) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  Google Scholar 

  45. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  46. Nosé S, Klein ML (2006) Constant pressure molecular dynamics for molecular systems. Mol Phys 50:1055–1076. https://doi.org/10.1080/00268978300102851

    Article  Google Scholar 

  47. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190. https://doi.org/10.1063/1.328693

    Article  CAS  Google Scholar 

  48. Roux B (1995) The calculation of the potential of mean force using computer simulations. Comput Phys Commun 91:275–282. https://doi.org/10.1016/0010-4655(95)00053-I

    Article  CAS  Google Scholar 

  49. Hub JS (2015) g_wham—A free weighted histogram analysis implementation including robust error and autocorrelation estimates. J Chem Phys 6:3713–3720

    Google Scholar 

  50. Cosgrove DJ (2014) Re-constructing our models of cellulose and primary cell wall assembly. Curr Opin Plant Biol 22:122–131. https://doi.org/10.1016/j.pbi.2014.11.001

    Article  CAS  Google Scholar 

  51. Hooft WW, Sander R, Vrien C G (1997) Objectively judging the quality of a protein structure from a Ramachandran plot. Comput Appl Biosci Cabios 13:425–430

    CAS  Google Scholar 

  52. Köppen S, Ohler B, Langel W (2007) Adsorption of collagen fragments on titanium oxide surfaces: a molecular dynamics study. Z für Phys Chemie 221:3–20. https://doi.org/10.1524/zpch.2007.221.1.3

    Article  CAS  Google Scholar 

  53. Quddus MA, Rojas OJ, Pasquinelli MA (2014) Molecular dynamics simulations of the adhesion of a thin annealed film of oleic acid onto crystalline cellulose. Biomacromolecules 15:147614–147683. https://doi.org/10.1021/bm500088c

    Article  CAS  Google Scholar 

  54. Ren Z, Guo R, Bi H, Jia X, Xu M, Cai L (2020) Interfacial adhesion of polylactic acid on cellulose surface: a molecular dynamics study. ACS Appl Mater Interfaces 12:3236–3244. https://doi.org/10.1021/acsami.9b20101

    Article  CAS  Google Scholar 

  55. Rudisill SG, DiVito MD, Hubel A, Stein A (2015) In vitro collagen fibril alignment via incorporation of nanocrystalline cellulose. Acta Biomater 12:122–128. https://doi.org/10.1016/j.actbio.2014.10.024

    Article  CAS  Google Scholar 

  56. Zhang M, Chen L, Ding C, Yang H, Huang L (2014) Interactions of collagen and cellulose in their blends with 1-ethyl-3-methylimidazolium acetate as solvent. Cellulose 21:3311–3322. https://doi.org/10.1007/s10570-014-0372-6

    Article  CAS  Google Scholar 

  57. Fularz A, Rice JH, Ballone P (2021) Morphology of nanometric overlayers made of porphyrin-type molecules physisorbed on cellulose Iβ crystals and nanocrystals. J Phys Chem B 125(41):11432–11443. https://doi.org/10.1021/acs.jpcb.1c07261

    Article  CAS  Google Scholar 

  58. Ballufi RW, Allen SM, Carter WC (2005) Kinetics of Materials. John Wiley & Sons, Massachusetts

  59. Li R, Zhang X, Dong H, Li Q, Shuai Z, Hu W (2016) Gibbs–Curie–Wulff theorem in organic materials: a case study on the relationship between surface energy and crystal growth. Adv Mater 28(8):1697–1702. https://doi.org/10.1002/adma.201504370

    Article  CAS  Google Scholar 

  60. Zhao P, Cao Z, Liu X, Ren P, Cao DB, Xiang H, Wen XD (2019) Morphology and reactivity evolution of hcp and fcc Ru nanoparticles under CO atmosphere. ACS Catal 9(4):2768–2776. https://doi.org/10.1021/acscatal.8b05074

    Article  CAS  Google Scholar 

  61. Wang W, Zhang X, Li C, Du G, Zhang H, Ni Y (2018) Using carboxylated cellulose nanofibers to enhance mechanical and barrier properties of collagen fiber film by electrostatic interaction. J Sci Food Agric 98:3089–3097. https://doi.org/10.1002/jsfa.8809

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Shaanxi Provincial Natural Science Basic Research Program for funding, as well as the reviewers for their comments and suggestions for improving the work.

Funding

This work was financially supported by the Natural Science Basic Research Plan in Shaanxi Province of China (2021JQ-537).

Author information

Authors and Affiliations

Authors

Contributions

LN and ZL conceived the idea, designed the experiments, evaluated data. LN and HM wrote the manuscript. HM and LN performed molecular dynamics simulations and carried out the analysis. All authors reviewed, approved and contributed to the manuscript finalization.

Corresponding authors

Correspondence to Zhijian Li or Lulu Ning.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2133.5 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Shi, Q., Li, X. et al. Molecular and thermodynamic insights into interfacial interactions between collagen and cellulose investigated by molecular dynamics simulation and umbrella sampling. J Comput Aided Mol Des 37, 39–51 (2023). https://doi.org/10.1007/s10822-022-00489-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-022-00489-8

Keywords

Navigation